{"title":"[Intelligent design of transcription factor-based biosensors].","authors":"Chaoning Liang, La Xiang, Shuangyan Tang","doi":"10.13345/j.cjb.240603","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factor (TF)-based biosensors have been widely applied in metabolic engineering, synthetic biology, metabolites monitoring, etc. These biosensors are praised for the high orthogonality, modularity, and operability. However, most natural TFs with weak responses and low specificity still demand optimization for desired performance in applications. Herein, we comprehensively summarize the recent advances in the engineering and optimization of TF-based biosensors with the assistance of computational simulation and artificial intelligence. This review includes the regulatory protein engineering aided by protein structure prediction and ligand binding simulation and the regulatory protein responses predicted by a mathematical model obtained from machine learning of mutagenesis data. In comparison with conventional tools, computational simulation and artificial intelligence enable more accurate and rapid design and construction of biosensors. Thus, these technologies will greatly promote the development of novel biosensors for applications.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1011-1022"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription factor (TF)-based biosensors have been widely applied in metabolic engineering, synthetic biology, metabolites monitoring, etc. These biosensors are praised for the high orthogonality, modularity, and operability. However, most natural TFs with weak responses and low specificity still demand optimization for desired performance in applications. Herein, we comprehensively summarize the recent advances in the engineering and optimization of TF-based biosensors with the assistance of computational simulation and artificial intelligence. This review includes the regulatory protein engineering aided by protein structure prediction and ligand binding simulation and the regulatory protein responses predicted by a mathematical model obtained from machine learning of mutagenesis data. In comparison with conventional tools, computational simulation and artificial intelligence enable more accurate and rapid design and construction of biosensors. Thus, these technologies will greatly promote the development of novel biosensors for applications.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.