[Intelligent design of transcription factor-based biosensors].

Q4 Biochemistry, Genetics and Molecular Biology
Chaoning Liang, La Xiang, Shuangyan Tang
{"title":"[Intelligent design of transcription factor-based biosensors].","authors":"Chaoning Liang, La Xiang, Shuangyan Tang","doi":"10.13345/j.cjb.240603","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription factor (TF)-based biosensors have been widely applied in metabolic engineering, synthetic biology, metabolites monitoring, etc. These biosensors are praised for the high orthogonality, modularity, and operability. However, most natural TFs with weak responses and low specificity still demand optimization for desired performance in applications. Herein, we comprehensively summarize the recent advances in the engineering and optimization of TF-based biosensors with the assistance of computational simulation and artificial intelligence. This review includes the regulatory protein engineering aided by protein structure prediction and ligand binding simulation and the regulatory protein responses predicted by a mathematical model obtained from machine learning of mutagenesis data. In comparison with conventional tools, computational simulation and artificial intelligence enable more accurate and rapid design and construction of biosensors. Thus, these technologies will greatly promote the development of novel biosensors for applications.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1011-1022"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Transcription factor (TF)-based biosensors have been widely applied in metabolic engineering, synthetic biology, metabolites monitoring, etc. These biosensors are praised for the high orthogonality, modularity, and operability. However, most natural TFs with weak responses and low specificity still demand optimization for desired performance in applications. Herein, we comprehensively summarize the recent advances in the engineering and optimization of TF-based biosensors with the assistance of computational simulation and artificial intelligence. This review includes the regulatory protein engineering aided by protein structure prediction and ligand binding simulation and the regulatory protein responses predicted by a mathematical model obtained from machine learning of mutagenesis data. In comparison with conventional tools, computational simulation and artificial intelligence enable more accurate and rapid design and construction of biosensors. Thus, these technologies will greatly promote the development of novel biosensors for applications.

[基于转录因子的生物传感器智能设计]。
基于转录因子的生物传感器已广泛应用于代谢工程、合成生物学、代谢物监测等领域。这些生物传感器具有高度的正交性、模块化和可操作性。然而,大多数反应弱、特异性低的天然tf在应用中仍需要优化以达到预期的性能。在此,我们综合总结了基于tf的生物传感器在计算模拟和人工智能辅助下的工程和优化方面的最新进展。本文综述了基于蛋白质结构预测和配体结合模拟的调控蛋白工程,以及基于机器学习诱变数据的数学模型预测的调控蛋白响应。与传统工具相比,计算模拟和人工智能可以更准确、更快速地设计和构建生物传感器。因此,这些技术将极大地促进新型生物传感器应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信