N M Ferreira, M E T Silva, M P L Parente, F Pinheiro, T Mascarenhas, A A Fernandes
{"title":"Evaluation of mechanical biocompatibility of cog threads for prolapse repair.","authors":"N M Ferreira, M E T Silva, M P L Parente, F Pinheiro, T Mascarenhas, A A Fernandes","doi":"10.1177/09544119251321130","DOIUrl":null,"url":null,"abstract":"<p><p>Pelvic floor disorders (PFD), including Pelvic Organ Prolapse (POP), can negatively impact a woman's daily activities and quality of life. POP is a growing concern, with an increasing number of cases each year and significant numbers of women going through surgery to alleviate it. Traditional interventions like the use of mesh implants have certain limitations such as repeated surgeries. An alternative surgical intervention technique using injectable biodegradable cog threads was suggested. The application of Finite element analysis (FEA) to this research allows us to personalize and select suitable POP correction techniques and study the effect of alternative reinforcement techniques. The 3D computational model of the vagina will be used to simulate defect repair using cog threads. To accurately model this, we conducted uniaxial tensile tests on both the polycaprolactone (PCL) cog threads and the sow's vaginal tissues, which mimic human tissue, providing vital data for precise finite element modeling. The study's findings suggest that cog threads may have the potential to provide benefits in the treatment of POP. This study provides a starting point for further research on cog threads as one possible treatment option for POP.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 2","pages":"155-164"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251321130","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pelvic floor disorders (PFD), including Pelvic Organ Prolapse (POP), can negatively impact a woman's daily activities and quality of life. POP is a growing concern, with an increasing number of cases each year and significant numbers of women going through surgery to alleviate it. Traditional interventions like the use of mesh implants have certain limitations such as repeated surgeries. An alternative surgical intervention technique using injectable biodegradable cog threads was suggested. The application of Finite element analysis (FEA) to this research allows us to personalize and select suitable POP correction techniques and study the effect of alternative reinforcement techniques. The 3D computational model of the vagina will be used to simulate defect repair using cog threads. To accurately model this, we conducted uniaxial tensile tests on both the polycaprolactone (PCL) cog threads and the sow's vaginal tissues, which mimic human tissue, providing vital data for precise finite element modeling. The study's findings suggest that cog threads may have the potential to provide benefits in the treatment of POP. This study provides a starting point for further research on cog threads as one possible treatment option for POP.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.