{"title":"[Advances in reconstruction and optimization of cellular physiological metabolic network models].","authors":"Luchi Xiao, Hongzhong Lu","doi":"10.13345/j.cjb.240966","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic reactions in cells, whether spontaneous or enzyme-catalyzed, form a highly complex metabolic network closely related to cellular physiological metabolic activities. The reconstruction of cellular physiological metabolic network models aids in systematically elucidating the relationship between genotype and growth phenotype, providing important computational biology tools for precisely characterizing cellular physiological metabolic activities and green biomanufacturing. This paper systematically introduces the latest research progress in different types of cellular physiological metabolic network models, including genome-scale metabolic models (GEMs), kinetic models, and enzyme-constrained genome-scale metabolic models (ecGEMs). Additionally, our paper discusses the advancements in the automated construction of GEMs and strategies for condition-specific GEM modeling. Considering artificial intelligence offers new opportunities for the high-precision construction of cellular physiological metabolic network models, our paper summarizes the applications of artificial intelligence in the development of kinetic models and enzyme-constrained models. In summary, the high-quality reconstruction of the aforementioned cellular physiological metabolic network models will provide robust computational support for future research in quantitative synthetic biology and systems biology.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1112-1132"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The metabolic reactions in cells, whether spontaneous or enzyme-catalyzed, form a highly complex metabolic network closely related to cellular physiological metabolic activities. The reconstruction of cellular physiological metabolic network models aids in systematically elucidating the relationship between genotype and growth phenotype, providing important computational biology tools for precisely characterizing cellular physiological metabolic activities and green biomanufacturing. This paper systematically introduces the latest research progress in different types of cellular physiological metabolic network models, including genome-scale metabolic models (GEMs), kinetic models, and enzyme-constrained genome-scale metabolic models (ecGEMs). Additionally, our paper discusses the advancements in the automated construction of GEMs and strategies for condition-specific GEM modeling. Considering artificial intelligence offers new opportunities for the high-precision construction of cellular physiological metabolic network models, our paper summarizes the applications of artificial intelligence in the development of kinetic models and enzyme-constrained models. In summary, the high-quality reconstruction of the aforementioned cellular physiological metabolic network models will provide robust computational support for future research in quantitative synthetic biology and systems biology.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.