Yi Duan, Guang Chen, Xiangjun Bao, Jing Xu, Lu Zhang, Xiaojing Yang
{"title":"GA BP prediction model for energy consumption of steel rolling reheating furnace.","authors":"Yi Duan, Guang Chen, Xiangjun Bao, Jing Xu, Lu Zhang, Xiaojing Yang","doi":"10.1038/s41598-025-95134-3","DOIUrl":null,"url":null,"abstract":"<p><p>Energy consumption serves as a critical indicator of energy utilization efficiency and environmental sustainability in the steel production process. Accurately predicting the Heat energy consumption per ton (HEC, GJ/t) of steel billet in Steel Rolling Reheating Furnace (SRRF) presents a formidable challenge owing to the complex interplay of factors such as production scheduling, raw material characteristics, process parameters, and equipment condition. This study proposes a novel approach to predict HEC (GJ/t) by utilizing actual production data from SRRF. A genetic algorithm (GA) optimized back-propagation neural network (BPNN) is developed and its performance is compared to that of a standard BP model. Experimental results reveal that the optimized GA-BP model, with a neural network structure of 17-10-1, achieves a prediction accuracy of 94.7% surpassing the 90.24% accuracy of the standard BP model. The proposed GA-BP model demonstrates superior predictive capabilities and robustness, offering valuable insights for optimizing process parameters and improving energy efficiency in SRRF operations.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11115"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95134-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Energy consumption serves as a critical indicator of energy utilization efficiency and environmental sustainability in the steel production process. Accurately predicting the Heat energy consumption per ton (HEC, GJ/t) of steel billet in Steel Rolling Reheating Furnace (SRRF) presents a formidable challenge owing to the complex interplay of factors such as production scheduling, raw material characteristics, process parameters, and equipment condition. This study proposes a novel approach to predict HEC (GJ/t) by utilizing actual production data from SRRF. A genetic algorithm (GA) optimized back-propagation neural network (BPNN) is developed and its performance is compared to that of a standard BP model. Experimental results reveal that the optimized GA-BP model, with a neural network structure of 17-10-1, achieves a prediction accuracy of 94.7% surpassing the 90.24% accuracy of the standard BP model. The proposed GA-BP model demonstrates superior predictive capabilities and robustness, offering valuable insights for optimizing process parameters and improving energy efficiency in SRRF operations.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.