SPY Interacts With Tubulin and Regulates Abscisic Acid-Induced Stomatal Closure in Arabidopsis.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-04-01 DOI:10.1002/pld3.70063
Tongtong Liu, Pan Wang, Zixuan Wang, Weipeng Dun, Jing Li, Rong Yu
{"title":"SPY Interacts With Tubulin and Regulates Abscisic Acid-Induced Stomatal Closure in Arabidopsis.","authors":"Tongtong Liu, Pan Wang, Zixuan Wang, Weipeng Dun, Jing Li, Rong Yu","doi":"10.1002/pld3.70063","DOIUrl":null,"url":null,"abstract":"<p><p>Sugars are important both as an energy source and a signaling cue. In <i>Arabidopsis thaliana,</i> SPINDLY (SPY) is the <i>bona fide</i> <i>O</i>-fucosylation transferase that links sugar with various plant growth and development processes. Previously, <i>spy</i> was shown to display a strong salt and drought tolerance phenotype. Herein we confirmed the phenotype and further studied its mechanism. We found that abscisic acid (ABA) elevated <i>SPY</i> expression in guard cells, and SPY is involved in ABA-induced stomatal closure. We show that SPY regulates the rearrangement of the microtubule cytoskeleton in guard cells. Moreover, ABA-induced microtubule reorganization is enhanced in <i>spy</i> mutants. Mechanistically, SPY interacts with α-tubulin1 (TUA1) in both yeast-two hybrid, bimolecular fluorescence complementation and split luciferase complementation imaging assays, indicating that TUA1 may be <i>O</i>-fucosylated by SPY. Our work is in line with the notion that SPY has many substrates involved in diverse processes in plants, and also unearths a key mechanism how glycosylation regulates the stomata movement via the microtubule cytoskeleton.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 4","pages":"e70063"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sugars are important both as an energy source and a signaling cue. In Arabidopsis thaliana, SPINDLY (SPY) is the bona fide O-fucosylation transferase that links sugar with various plant growth and development processes. Previously, spy was shown to display a strong salt and drought tolerance phenotype. Herein we confirmed the phenotype and further studied its mechanism. We found that abscisic acid (ABA) elevated SPY expression in guard cells, and SPY is involved in ABA-induced stomatal closure. We show that SPY regulates the rearrangement of the microtubule cytoskeleton in guard cells. Moreover, ABA-induced microtubule reorganization is enhanced in spy mutants. Mechanistically, SPY interacts with α-tubulin1 (TUA1) in both yeast-two hybrid, bimolecular fluorescence complementation and split luciferase complementation imaging assays, indicating that TUA1 may be O-fucosylated by SPY. Our work is in line with the notion that SPY has many substrates involved in diverse processes in plants, and also unearths a key mechanism how glycosylation regulates the stomata movement via the microtubule cytoskeleton.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信