Seyyed Mohammad Mirmohammadi, Omid Moini Jazani, Ali Gharieh
{"title":"Thermomechanical analyses and ANN modeling of novel epoxy adhesives with CSR particles and zinc oxide nanoparticles in structural bonding.","authors":"Seyyed Mohammad Mirmohammadi, Omid Moini Jazani, Ali Gharieh","doi":"10.1038/s41598-025-96270-6","DOIUrl":null,"url":null,"abstract":"<p><p>Epoxy adhesives are widely used as structural adhesives distinguished by a significant degree of cross-linking, resulting in their brittle characteristics. Some specialized applications require improved thermal stability and adhesive strength. The incorporation of zinc oxide nanoparticles into a core-shell rubber (CSR) structure composed of poly(butyl acrylate-allyl methacrylate) core and poly(methyl methacrylate-glycidyl methacrylate) shell will enhance the adhesion, toughness, and thermal stability of epoxy adhesives. We synthesized CSR particles using a two-stage emulsion polymerization method, characterizing them through Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) analyses. We synthesized epoxy adhesives with different CSR particles ratios (1.25, 2.5, and 3.75 phr) and zinc oxide nanoparticles (1, 2, and 5 phr) using mechanical stirring and ultrasonication (a two-step mixing process) to enhance dispersion. We cured the epoxy adhesive samples for 7 days for tensile tests and 2 days for lap shear tests at room temperature. We employed the tensile and lap shear tests to assess the mechanical properties of the samples. The samples underwent thermogravimetric analysis (TGA) to assess their thermal stability. We assessed the fracture surface of the optimum samples using field-emission scanning electron microscopy (FESEM). We utilized design-of-experiments (DOE) and artificial neural network (ANN) approaches to model the mechanical properties. The outcomes of FTIR, SEM, TEM and DCS analyses validated the successful synthesis of CSR particles. The tensile test findings on the dumbbell-shaped samples show a 51%, 30%, and 218% enhancement in tensile strength, modulus, and toughness for the samples containing 2.5 phr CSR particles and 2 phr zinc oxide nanoparticles, respectively. Furthermore, the lap shear tests revealed that the addition of 3.75 phr CSR particles and 5 phr zinc oxide nanoparticles increased the shear strength to 19.5 MPa. This is 127% higher than the pure epoxy. The TGA data indicated that both additions improved the thermal stability of the pure epoxy. Additionally, the predictions of shear strength, toughness, tensile modulus, and tensile strength by DOE and ANN were very close to the experimental results (R<sup>2</sup><sub>adj</sub> > 0.95 for DOE and MRE<sub>ave</sub> < 3.2 for ANN).</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11201"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-96270-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy adhesives are widely used as structural adhesives distinguished by a significant degree of cross-linking, resulting in their brittle characteristics. Some specialized applications require improved thermal stability and adhesive strength. The incorporation of zinc oxide nanoparticles into a core-shell rubber (CSR) structure composed of poly(butyl acrylate-allyl methacrylate) core and poly(methyl methacrylate-glycidyl methacrylate) shell will enhance the adhesion, toughness, and thermal stability of epoxy adhesives. We synthesized CSR particles using a two-stage emulsion polymerization method, characterizing them through Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) analyses. We synthesized epoxy adhesives with different CSR particles ratios (1.25, 2.5, and 3.75 phr) and zinc oxide nanoparticles (1, 2, and 5 phr) using mechanical stirring and ultrasonication (a two-step mixing process) to enhance dispersion. We cured the epoxy adhesive samples for 7 days for tensile tests and 2 days for lap shear tests at room temperature. We employed the tensile and lap shear tests to assess the mechanical properties of the samples. The samples underwent thermogravimetric analysis (TGA) to assess their thermal stability. We assessed the fracture surface of the optimum samples using field-emission scanning electron microscopy (FESEM). We utilized design-of-experiments (DOE) and artificial neural network (ANN) approaches to model the mechanical properties. The outcomes of FTIR, SEM, TEM and DCS analyses validated the successful synthesis of CSR particles. The tensile test findings on the dumbbell-shaped samples show a 51%, 30%, and 218% enhancement in tensile strength, modulus, and toughness for the samples containing 2.5 phr CSR particles and 2 phr zinc oxide nanoparticles, respectively. Furthermore, the lap shear tests revealed that the addition of 3.75 phr CSR particles and 5 phr zinc oxide nanoparticles increased the shear strength to 19.5 MPa. This is 127% higher than the pure epoxy. The TGA data indicated that both additions improved the thermal stability of the pure epoxy. Additionally, the predictions of shear strength, toughness, tensile modulus, and tensile strength by DOE and ANN were very close to the experimental results (R2adj > 0.95 for DOE and MREave < 3.2 for ANN).
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.