Deubiquitination of epidermal growth factor receptor by ubiquitin-specific peptidase 54 enhances drug sensitivity to gefitinib in gefitinib-resistant non-small cell lung cancer cells.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0320668
Mi Seong Kim, Min Seuk Kim
{"title":"Deubiquitination of epidermal growth factor receptor by ubiquitin-specific peptidase 54 enhances drug sensitivity to gefitinib in gefitinib-resistant non-small cell lung cancer cells.","authors":"Mi Seong Kim, Min Seuk Kim","doi":"10.1371/journal.pone.0320668","DOIUrl":null,"url":null,"abstract":"<p><p>A precise balance between ubiquitination and deubiquitination is crucial for cellular regulation. Ubiquitin-specific peptidase 54 (USP54), an active deubiquitinase (DUB), modulates the ubiquitination of the epidermal growth factor receptor (EGFR). While the significance of USP54 in tumorigenesis is known, its specific function in cancer progression remains unclear. This study investigates the role of USP54 in gefitinib sensitivity in gefitinib-resistant non-small cell lung cancer (NSCLC) cells. Using western blotting and next-generation sequencing, we examined gene expression changes in ubiquitination pathways. USP54 deficiency and its impact on cell viability and gefitinib response were evaluated in 2D and 3D spheroid cancer models. Prolonged gefitinib exposure altered the expression of 20 deubiquitinase-regulating genes. Notably, ubiquitin C-terminal hydrolase L3, downregulated by gefitinib, was identified as a key regulator of EGFR ubiquitination in gefitinib-sensitive PC9 cells. Silencing USP54 in resistant NSCLC cells increased gefitinib-induced EGFR ubiquitination and G0/G1 cell cycle arrest, enhancing drug susceptibility in resistant spheroids. USP54 upregulation in gefitinib-treated cells was associated with reduced EGFR ubiquitination, stabilizing EGFR and promoting cell survival. These findings suggest USP54 as a critical modulator of EGFR stability and a potential therapeutic target to overcome gefitinib resistance in NSCLC.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320668"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320668","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A precise balance between ubiquitination and deubiquitination is crucial for cellular regulation. Ubiquitin-specific peptidase 54 (USP54), an active deubiquitinase (DUB), modulates the ubiquitination of the epidermal growth factor receptor (EGFR). While the significance of USP54 in tumorigenesis is known, its specific function in cancer progression remains unclear. This study investigates the role of USP54 in gefitinib sensitivity in gefitinib-resistant non-small cell lung cancer (NSCLC) cells. Using western blotting and next-generation sequencing, we examined gene expression changes in ubiquitination pathways. USP54 deficiency and its impact on cell viability and gefitinib response were evaluated in 2D and 3D spheroid cancer models. Prolonged gefitinib exposure altered the expression of 20 deubiquitinase-regulating genes. Notably, ubiquitin C-terminal hydrolase L3, downregulated by gefitinib, was identified as a key regulator of EGFR ubiquitination in gefitinib-sensitive PC9 cells. Silencing USP54 in resistant NSCLC cells increased gefitinib-induced EGFR ubiquitination and G0/G1 cell cycle arrest, enhancing drug susceptibility in resistant spheroids. USP54 upregulation in gefitinib-treated cells was associated with reduced EGFR ubiquitination, stabilizing EGFR and promoting cell survival. These findings suggest USP54 as a critical modulator of EGFR stability and a potential therapeutic target to overcome gefitinib resistance in NSCLC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信