microRNA-218-5p coordinates scaling of excitatory and inhibitory synapses during homeostatic synaptic plasticity.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
David Colameo, Sara M Maley, Jochen Winterer, Waleed ElGrawani, Carlotta Gilardi, Simon Galkin, Roberto Fiore, Steven A Brown, Gerhard Schratt
{"title":"microRNA-218-5p coordinates scaling of excitatory and inhibitory synapses during homeostatic synaptic plasticity.","authors":"David Colameo, Sara M Maley, Jochen Winterer, Waleed ElGrawani, Carlotta Gilardi, Simon Galkin, Roberto Fiore, Steven A Brown, Gerhard Schratt","doi":"10.1073/pnas.2500880122","DOIUrl":null,"url":null,"abstract":"<p><p>Homeostatic synaptic plasticity (HSP) is a neuronal mechanism that allows networks to compensate for prolonged changes in activity by adjusting synaptic strength. This process is crucial for maintaining stable brain function and has been implicated in memory consolidation during sleep. While scaling of both excitatory and inhibitory synapses plays an important role during homeostatic synaptic plasticity, molecules coordinating these processes are unknown. In this study, we investigate the role of miR-218-5p as a regulator of inhibitory and excitatory synapses in the context of picrotoxin (PTX)-induced homeostatic synaptic downscaling (HSD) in rat hippocampal neurons. Using enrichment analysis of microRNA-binding sites in genes changing upon PTX-induced HSD, we bioinformatically predict and experimentally validate increased miR-218-5p activity upon PTX treatment. By electrophysiological recordings and confocal microscopy, we demonstrate that inhibiting miR-218-5p activity exerts a dual effect during HSD: It occludes the downscaling of excitatory synapses and dendritic spines, while at the same time attenuating inhibitory synapse upscaling. Furthermore, we identify the Neuroligin2 interacting molecule Mdga1 as a direct miR-218-5p target which potentially mediates the effect of miR-218-5p on homeostatic upscaling of inhibitory synapses. By performing long-term electroencephalographic recordings, we further reveal that local inhibition of miR-218-5p in the somatosensory cortex reduces local slow-wave activity during non-rapid-eye-movement sleep. In summary, this study uncovers miR-218-5p as a key player in coordinating inhibitory and excitatory synapses during homeostatic plasticity and sleep. Our findings contribute to a deeper understanding of how neural circuits maintain stability in the face of activity-induced perturbations, with implications for pathophysiology.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 14","pages":"e2500880122"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500880122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Homeostatic synaptic plasticity (HSP) is a neuronal mechanism that allows networks to compensate for prolonged changes in activity by adjusting synaptic strength. This process is crucial for maintaining stable brain function and has been implicated in memory consolidation during sleep. While scaling of both excitatory and inhibitory synapses plays an important role during homeostatic synaptic plasticity, molecules coordinating these processes are unknown. In this study, we investigate the role of miR-218-5p as a regulator of inhibitory and excitatory synapses in the context of picrotoxin (PTX)-induced homeostatic synaptic downscaling (HSD) in rat hippocampal neurons. Using enrichment analysis of microRNA-binding sites in genes changing upon PTX-induced HSD, we bioinformatically predict and experimentally validate increased miR-218-5p activity upon PTX treatment. By electrophysiological recordings and confocal microscopy, we demonstrate that inhibiting miR-218-5p activity exerts a dual effect during HSD: It occludes the downscaling of excitatory synapses and dendritic spines, while at the same time attenuating inhibitory synapse upscaling. Furthermore, we identify the Neuroligin2 interacting molecule Mdga1 as a direct miR-218-5p target which potentially mediates the effect of miR-218-5p on homeostatic upscaling of inhibitory synapses. By performing long-term electroencephalographic recordings, we further reveal that local inhibition of miR-218-5p in the somatosensory cortex reduces local slow-wave activity during non-rapid-eye-movement sleep. In summary, this study uncovers miR-218-5p as a key player in coordinating inhibitory and excitatory synapses during homeostatic plasticity and sleep. Our findings contribute to a deeper understanding of how neural circuits maintain stability in the face of activity-induced perturbations, with implications for pathophysiology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信