Construction of cDNA library of Dalbergia odorifera induced by low temperature stress and screening of low temperature tolerant genes.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318935
Shaocui Li, Xia An, Fayong Li, Yining Chen, Xiaowen Li
{"title":"Construction of cDNA library of Dalbergia odorifera induced by low temperature stress and screening of low temperature tolerant genes.","authors":"Shaocui Li, Xia An, Fayong Li, Yining Chen, Xiaowen Li","doi":"10.1371/journal.pone.0318935","DOIUrl":null,"url":null,"abstract":"<p><p>To systematically analyze the gene function of Dalbergia odorifera, the seedlings of D. odorifera were treated with low-temperature stress for 6 h. Total RNA was extracted from a mixture of seedling roots, stems, and leaves, and a low-temperature-induced D. odorifera yeast cDNA expression library was constructed. The library volume was 1.032 × 108 CFU, and the PCR (Polymerase Chain Reaction) identification of the library bacterial fluid showed that the amplification was around 1000 bp, with a single randomly distributed band, indicating that the library had been recombinantly inserted into the pYES2 vector. The GO (Gene Ontology) analysis showed that the library genes were mainly involved in metabolic and stress signaling pathways. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that the genes were primarily related to energy and metabolic pathways. Twenty-one genes were screened or obtained at -20°C for low-temperature tolerance. In addition, the organ expression profiles of the candidate genes were analyzed based on RNA-seq data, and the expression profiles of the candidate genes under low-temperature stress were also examined. The construction of the yeast library provides genetic resources for the analysis of the mechanism of low-temperature tolerance of D. odorifera, which is important for comprehending and utilizing the genetic resources of D. odorifera.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0318935"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318935","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To systematically analyze the gene function of Dalbergia odorifera, the seedlings of D. odorifera were treated with low-temperature stress for 6 h. Total RNA was extracted from a mixture of seedling roots, stems, and leaves, and a low-temperature-induced D. odorifera yeast cDNA expression library was constructed. The library volume was 1.032 × 108 CFU, and the PCR (Polymerase Chain Reaction) identification of the library bacterial fluid showed that the amplification was around 1000 bp, with a single randomly distributed band, indicating that the library had been recombinantly inserted into the pYES2 vector. The GO (Gene Ontology) analysis showed that the library genes were mainly involved in metabolic and stress signaling pathways. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that the genes were primarily related to energy and metabolic pathways. Twenty-one genes were screened or obtained at -20°C for low-temperature tolerance. In addition, the organ expression profiles of the candidate genes were analyzed based on RNA-seq data, and the expression profiles of the candidate genes under low-temperature stress were also examined. The construction of the yeast library provides genetic resources for the analysis of the mechanism of low-temperature tolerance of D. odorifera, which is important for comprehending and utilizing the genetic resources of D. odorifera.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信