A unified ensemble soil moisture dataset across the continental United States.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lingcheng Li, Xinming Lin, Yilin Fang, Z Jason Hou, L Ruby Leung, Yaoping Wang, Jiafu Mao, Yaping Xu, Elias Massoud, Mingjie Shi
{"title":"A unified ensemble soil moisture dataset across the continental United States.","authors":"Lingcheng Li, Xinming Lin, Yilin Fang, Z Jason Hou, L Ruby Leung, Yaoping Wang, Jiafu Mao, Yaping Xu, Elias Massoud, Mingjie Shi","doi":"10.1038/s41597-025-04657-x","DOIUrl":null,"url":null,"abstract":"<p><p>A unified ensemble soil moisture (SM) package has been developed over the Continental United States (CONUS). The data package includes 19 products from land surface models, remote sensing, reanalysis, and machine learning models. All datasets are unified to a 0.25-degree and monthly spatiotemporal resolution, providing a comprehensive view of surface SM dynamics. The statistical analysis of the datasets leverages the Koppen-Geiger Climate Classification to explore surface SM's spatiotemporal variabilities. The extracted SM characteristics highlight distinct patterns, with the western CONUS showing larger coefficient of variation values and the eastern CONUS exhibiting higher SM values. Remote sensing datasets tend to be drier, while reanalysis products present wetter conditions. In-situ SM observations serve as the basis for wavelet power spectrum analyses to explain discrepancies in temporal scales across datasets facilitating daily SM records. This study provides a comprehensive soil moisture data package and an analysis framework that can be used for Earth system model evaluations and uncertainty quantification, quantifying drought impacts and land-atmosphere interactions and making recommendations for drought response planning.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"546"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04657-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A unified ensemble soil moisture (SM) package has been developed over the Continental United States (CONUS). The data package includes 19 products from land surface models, remote sensing, reanalysis, and machine learning models. All datasets are unified to a 0.25-degree and monthly spatiotemporal resolution, providing a comprehensive view of surface SM dynamics. The statistical analysis of the datasets leverages the Koppen-Geiger Climate Classification to explore surface SM's spatiotemporal variabilities. The extracted SM characteristics highlight distinct patterns, with the western CONUS showing larger coefficient of variation values and the eastern CONUS exhibiting higher SM values. Remote sensing datasets tend to be drier, while reanalysis products present wetter conditions. In-situ SM observations serve as the basis for wavelet power spectrum analyses to explain discrepancies in temporal scales across datasets facilitating daily SM records. This study provides a comprehensive soil moisture data package and an analysis framework that can be used for Earth system model evaluations and uncertainty quantification, quantifying drought impacts and land-atmosphere interactions and making recommendations for drought response planning.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信