{"title":"A lightweight trichosanthes kirilowii maxim detection algorithm in complex mountain environments based on improved YOLOv7-tiny.","authors":"Zhongjian Xie, Xinwei Chen, Weilin Wu, Yao Xiao, Yuanhang Li, Yaya Zhang, ZhuXuan Wan, Weiqi Chen","doi":"10.1371/journal.pone.0320315","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting Trichosanthes Kirilowii Maxim (Cucurbitaceae) in complex mountain environments is critical for developing automated harvesting systems. However, the environmental characteristics of brightness variation, inter-plant occlusion, and motion-induced blurring during harvesting operations, detection algorithms face excessive parameters and high computational intensity. Accordingly, this study proposes a lightweight T.Kirilowii detection algorithm for complex mountainous environments based on YOLOv7-tiny, named KPD-YOLOv7-GD. Firstly, improve the multi-scale feature layer and reduce the complexity of the model. Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model's complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. The experimental results showed that the mean average precision of the improved network KPD-YOLOv7-GD reached 93.2%. Benchmarked against mainstream single-stage algorithms (YOLOv3-tiny, YOLOv5s, YOLOv6s, YOLOv7-tiny, and YOLOv8), KPD-YOLOv7-GD demonstrated mean average precision improvements of 4.8%, 0.6%, 3.0%, 0.6%, and 0.2% with corresponding model compression rates of 81.6%, 68.8%, 88.9%, 63.4%, and 27.4%, respectively. Compared with similar studies, KPD-YOLOv7-GD exhibits lower complexity and higher recognition speed accuracy, making it more suitable for resource-constrained T.kirilowii harvesting robots.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 4","pages":"e0320315"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0320315","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting Trichosanthes Kirilowii Maxim (Cucurbitaceae) in complex mountain environments is critical for developing automated harvesting systems. However, the environmental characteristics of brightness variation, inter-plant occlusion, and motion-induced blurring during harvesting operations, detection algorithms face excessive parameters and high computational intensity. Accordingly, this study proposes a lightweight T.Kirilowii detection algorithm for complex mountainous environments based on YOLOv7-tiny, named KPD-YOLOv7-GD. Firstly, improve the multi-scale feature layer and reduce the complexity of the model. Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model's complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. The experimental results showed that the mean average precision of the improved network KPD-YOLOv7-GD reached 93.2%. Benchmarked against mainstream single-stage algorithms (YOLOv3-tiny, YOLOv5s, YOLOv6s, YOLOv7-tiny, and YOLOv8), KPD-YOLOv7-GD demonstrated mean average precision improvements of 4.8%, 0.6%, 3.0%, 0.6%, and 0.2% with corresponding model compression rates of 81.6%, 68.8%, 88.9%, 63.4%, and 27.4%, respectively. Compared with similar studies, KPD-YOLOv7-GD exhibits lower complexity and higher recognition speed accuracy, making it more suitable for resource-constrained T.kirilowii harvesting robots.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage