Microwave-assisted synthesis of self-assembled C-doped-ZnO/g-C3N4 heterojunction catalysts for effective photodegradation of ofloxacin antibiotic.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Thi Viet Ha Luu, Ngoc Nhiem Dao, Van Vinh Nguyen, Quang Bac Nguyen, Thi Ha Chi Nguyen, Ngoc Chuc Pham, Ngoc Hoanh Dao, Trung Kien Nguyen
{"title":"Microwave-assisted synthesis of self-assembled C-doped-ZnO/g-C<sub>3</sub>N<sub>4</sub> heterojunction catalysts for effective photodegradation of ofloxacin antibiotic.","authors":"Thi Viet Ha Luu, Ngoc Nhiem Dao, Van Vinh Nguyen, Quang Bac Nguyen, Thi Ha Chi Nguyen, Ngoc Chuc Pham, Ngoc Hoanh Dao, Trung Kien Nguyen","doi":"10.1039/d5na00060b","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, carbon-doped zinc oxide (CZ45) prepared using the microwave-assisted solvothermal method was electrostatically assembled with graphitic carbon nitride (GCN) to obtain CZ45/GCN (CZCN) heterojunction photocatalysts. The obtained composites showed average sizes in the range of 19.12-20.51 nm with the disintegration of petal-like stacked GCN sheets. A significant decrease in the bandgap (<i>E</i> <sub>g</sub>) from 3.12 eV in CZ45 to 2.67-2.81 eV in the CZCN composites and the photoluminescence (PL) spectra indicated an enhanced charge carrier separation suitable for the catalytic application under visible light irradiation. The CZCN11 composite (<i>E</i> <sub>g</sub> = 2.81 eV) with a CZ45 : GCN weight ratio of 1 : 1 demonstrated outstanding photocatalytic performance in the degradation of ofloxacin (OFL) antibiotics compared to the other prepared CZCN composites as well as GCN and CZ45. The optimal parameters for OFL photodegradation by CZCN11 were determined; the CZCN11 dosage, OFL initial concentration, and pH range were found to be 1.01 g L<sup>-1</sup>, 20 ppm, and 7.0-8.0, respectively. Under these conditions, about 96% of the initial amount of OFL was decomposed at an apparent rate of 0.0173 min<sup>-1</sup> in 180 min. A reusability test indicated the excellent durability and recyclability of CZCN11 in OFL photodegradation since the degradation efficiency was reduced only by about 1% after five successive runs without any alteration in the original structure of the composite. Furthermore, the active-charge-trapping experiments displayed the crucial role of superoxide (˙O<sub>2</sub> <sup>-</sup>) radicals in OFL photodegradation by the CZCN composites.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00060b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, carbon-doped zinc oxide (CZ45) prepared using the microwave-assisted solvothermal method was electrostatically assembled with graphitic carbon nitride (GCN) to obtain CZ45/GCN (CZCN) heterojunction photocatalysts. The obtained composites showed average sizes in the range of 19.12-20.51 nm with the disintegration of petal-like stacked GCN sheets. A significant decrease in the bandgap (E g) from 3.12 eV in CZ45 to 2.67-2.81 eV in the CZCN composites and the photoluminescence (PL) spectra indicated an enhanced charge carrier separation suitable for the catalytic application under visible light irradiation. The CZCN11 composite (E g = 2.81 eV) with a CZ45 : GCN weight ratio of 1 : 1 demonstrated outstanding photocatalytic performance in the degradation of ofloxacin (OFL) antibiotics compared to the other prepared CZCN composites as well as GCN and CZ45. The optimal parameters for OFL photodegradation by CZCN11 were determined; the CZCN11 dosage, OFL initial concentration, and pH range were found to be 1.01 g L-1, 20 ppm, and 7.0-8.0, respectively. Under these conditions, about 96% of the initial amount of OFL was decomposed at an apparent rate of 0.0173 min-1 in 180 min. A reusability test indicated the excellent durability and recyclability of CZCN11 in OFL photodegradation since the degradation efficiency was reduced only by about 1% after five successive runs without any alteration in the original structure of the composite. Furthermore, the active-charge-trapping experiments displayed the crucial role of superoxide (˙O2 -) radicals in OFL photodegradation by the CZCN composites.

微波辅助合成自组装c掺杂zno /g-C3N4异质结催化剂光降解氧氟沙星抗生素
本研究将微波辅助溶剂热法制备的碳掺杂氧化锌(CZ45)与石墨氮化碳(GCN)静电组装,得到了CZ45/GCN (CZCN)异质结光催化剂。复合材料的平均粒径在19.12 ~ 20.51 nm之间,呈花瓣状堆积状。CZCN复合材料的带隙(E g)从CZ45的3.12 eV显著减小到2.67 ~ 2.81 eV,光致发光(PL)光谱表明,复合材料的载流子分离能力增强,适合于可见光下的催化应用。与其他制备的CZCN复合材料以及GCN和CZ45相比,当CZ45与GCN的质量比为1:1时,CZCN11复合材料(E g = 2.81 eV)对氧氟沙星(OFL)抗生素的降解表现出优异的光催化性能。确定了CZCN11光降解OFL的最佳工艺参数;CZCN11的投加量为1.01 g L-1, OFL初始浓度为20 ppm, pH范围为7.0 ~ 8.0。在此条件下,以0.0173 min-1的表观速率在180 min内降解了约96%的初始量的OFL。重复使用试验表明,CZCN11在OFL光降解中具有优异的耐久性和可回收性,连续5次降解后降解效率仅降低约1%,而复合材料的原始结构没有任何改变。此外,活性电荷捕获实验表明,超氧化物(˙O2 -)自由基在CZCN复合材料对OFL的光降解中起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信