Bjarke Frost Nielsen, Chadi M Saad-Roy, C Jessica E Metcalf, Cécile Viboud, Bryan T Grenfell
{"title":"Eco-evolutionary dynamics of pathogen immune-escape: deriving a population-level phylodynamic curve.","authors":"Bjarke Frost Nielsen, Chadi M Saad-Roy, C Jessica E Metcalf, Cécile Viboud, Bryan T Grenfell","doi":"10.1098/rsif.2024.0675","DOIUrl":null,"url":null,"abstract":"<p><p>The phylodynamic curve (Grenfell <i>et al</i>. 2004 <i>Science</i> <b>303</b>, 327-332 (doi:10.1126/science.1090727)) conceptualizes how immunity shapes the rate of viral adaptation in a non-monotonic fashion, through its opposing effects on viral abundance and the strength of selection. However, concrete and quantitative model realizations of this influential concept are rare. Here, we present an analytic, stochastic framework in which a population-scale phylodynamic curve emerges dynamically, allowing us to address questions regarding the risk and timing of the emergence of viral immune escape variants. We explore how pathogen- and population-specific parameters such as strength of immunity, transmissibility, seasonality and antigenic constraints affect the emergence risk. For pathogens exhibiting pronounced seasonality, we find that the timing of likely immune-escape variant emergence depends on the level of case importation between regions. Motivated by the COVID-19 pandemic, we probe the likely effects of non-pharmaceutical interventions (NPIs), and the lifting thereof, on the risk of viral escape variant emergence. Looking ahead, the framework has the potential to become a useful tool for probing how natural immunity, as well as choices in vaccine design and distribution and the implementation of NPIs, affect the evolution of common viral pathogens.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 225","pages":"20240675"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0675","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The phylodynamic curve (Grenfell et al. 2004 Science303, 327-332 (doi:10.1126/science.1090727)) conceptualizes how immunity shapes the rate of viral adaptation in a non-monotonic fashion, through its opposing effects on viral abundance and the strength of selection. However, concrete and quantitative model realizations of this influential concept are rare. Here, we present an analytic, stochastic framework in which a population-scale phylodynamic curve emerges dynamically, allowing us to address questions regarding the risk and timing of the emergence of viral immune escape variants. We explore how pathogen- and population-specific parameters such as strength of immunity, transmissibility, seasonality and antigenic constraints affect the emergence risk. For pathogens exhibiting pronounced seasonality, we find that the timing of likely immune-escape variant emergence depends on the level of case importation between regions. Motivated by the COVID-19 pandemic, we probe the likely effects of non-pharmaceutical interventions (NPIs), and the lifting thereof, on the risk of viral escape variant emergence. Looking ahead, the framework has the potential to become a useful tool for probing how natural immunity, as well as choices in vaccine design and distribution and the implementation of NPIs, affect the evolution of common viral pathogens.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.