Warhead-bearing natural compounds for multi-pathway irreversible inhibition to overcome drug resistance in colorectal cancer.

IF 2.8 4区 医学 Q2 ONCOLOGY
Huaping Hou, Xinqi Liu, Wentao Liu, Pengfei Zhang, Bin Zhou
{"title":"Warhead-bearing natural compounds for multi-pathway irreversible inhibition to overcome drug resistance in colorectal cancer.","authors":"Huaping Hou, Xinqi Liu, Wentao Liu, Pengfei Zhang, Bin Zhou","doi":"10.1007/s12032-025-02699-0","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths globally, with approximately 930000 fatalities recorded in 2020. Resistance to conventional therapies continues to be a major obstacle in colorectal cancer treatment, highlighting the need for novel therapeutic strategies to enhance efficacy. This study aims to bridge this gap by exploring a multi-target inhibition approach using naturally derived electrophilic compounds, offering a potential solution to overcome drug resistance. Key CRC-covalent targets-EGFR, SRC, AKT1, HER2, and ERK2-were identified through network pharmacology and protein-protein interaction analysis. A panel of natural compounds, including ophiobolin A, deoxyelephantopin, eupalmerin acetate, curcumin, andrographolide, and syringolin A, was assessed for their inhibitory potential, benchmarking their activity against reference chemotherapeutics. Covalent docking and covalent molecular dynamics (CMD) were performed for 30 ligand-protein complexes to evaluate the binding affinities of the studied compounds. Against EGFR, curcumin displayed a competitive docking score of - 9.458 kcal/mol and ΔG<sub>bind</sub> of - 23.00 kcal/mol, closely matching the performance of afatinib (- 10.134 kcal/mol and - 24.28 kcal/mol, respectively). Syringolin A and andrographolide also exhibited strong binding affinities for EGFR. Against SRC, curcumin and andrographolide demonstrated excellent binding potential, achieving docking scores of - 8.360 and - 6.585 kcal/mol and ΔG<sub>bind</sub> values of - 38.91 and - 34.00 kcal/mol, respectively. In the case of AKT1, andrographolide displayed a competitive performance (- 8.044 kcal/mol, ΔG<sub>bind</sub>: - 32.00 kcal/mol), followed by curcumin and syringolin A. Andrographolide achieved the strongest binding affinity among the natural compounds against HER2 (- 7.006 kcal/mol, ΔG<sub>bind</sub>: - 21.01 kcal/mol) and ERK2 (- 7.640 kcal/mol, ΔG<sub>bind</sub>: - 33.00 kcal/mol), outperforming curcumin (- 7.468 kcal/mol, ΔG<sub>bind</sub>: - 31.23 kcal/mol) and deoxyelephantopin (- 6.517 kcal/mol, ΔG<sub>bind</sub>: - 29.01 kcal/mol). These results underscore the strong binding affinities of natural compounds to CRC targets and suggest that these compounds, either as standalone agents or in combination therapies, could complement existing chemotherapeutics by overcoming treatment resistance, thereby improving therapeutic outcomes in CRC patients.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 5","pages":"148"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02699-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths globally, with approximately 930000 fatalities recorded in 2020. Resistance to conventional therapies continues to be a major obstacle in colorectal cancer treatment, highlighting the need for novel therapeutic strategies to enhance efficacy. This study aims to bridge this gap by exploring a multi-target inhibition approach using naturally derived electrophilic compounds, offering a potential solution to overcome drug resistance. Key CRC-covalent targets-EGFR, SRC, AKT1, HER2, and ERK2-were identified through network pharmacology and protein-protein interaction analysis. A panel of natural compounds, including ophiobolin A, deoxyelephantopin, eupalmerin acetate, curcumin, andrographolide, and syringolin A, was assessed for their inhibitory potential, benchmarking their activity against reference chemotherapeutics. Covalent docking and covalent molecular dynamics (CMD) were performed for 30 ligand-protein complexes to evaluate the binding affinities of the studied compounds. Against EGFR, curcumin displayed a competitive docking score of - 9.458 kcal/mol and ΔGbind of - 23.00 kcal/mol, closely matching the performance of afatinib (- 10.134 kcal/mol and - 24.28 kcal/mol, respectively). Syringolin A and andrographolide also exhibited strong binding affinities for EGFR. Against SRC, curcumin and andrographolide demonstrated excellent binding potential, achieving docking scores of - 8.360 and - 6.585 kcal/mol and ΔGbind values of - 38.91 and - 34.00 kcal/mol, respectively. In the case of AKT1, andrographolide displayed a competitive performance (- 8.044 kcal/mol, ΔGbind: - 32.00 kcal/mol), followed by curcumin and syringolin A. Andrographolide achieved the strongest binding affinity among the natural compounds against HER2 (- 7.006 kcal/mol, ΔGbind: - 21.01 kcal/mol) and ERK2 (- 7.640 kcal/mol, ΔGbind: - 33.00 kcal/mol), outperforming curcumin (- 7.468 kcal/mol, ΔGbind: - 31.23 kcal/mol) and deoxyelephantopin (- 6.517 kcal/mol, ΔGbind: - 29.01 kcal/mol). These results underscore the strong binding affinities of natural compounds to CRC targets and suggest that these compounds, either as standalone agents or in combination therapies, could complement existing chemotherapeutics by overcoming treatment resistance, thereby improving therapeutic outcomes in CRC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信