{"title":"Thioester-containing protein TEP15 promotes malaria parasite development in mosquitoes through negative regulation of melanization.","authors":"Xin Qin, Jianyong Li, Feng Zhu, Jian Zhang","doi":"10.1186/s13071-025-06772-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thioester-containing proteins (TEPs) serve as crucial effectors and regulatory components within the innate immune system of mosquitoes. Despite their significance, the mechanisms by which TEPs exert negative regulation on the immune response in mosquitoes remain inadequately understood. This study aims to elucidate the role of TEPs in the negative regulation of melanization, thereby advancing our comprehension of their regulatory function in the immune response.</p><p><strong>Methods: </strong>We infected female Anopheles stephensi mosquitoes with Plasmodium yoelii by allowing them to feed on pre-infected female Kunming mice. Western blot, quantitative polymerase chain reaction, differential gene expression analyses, and gene silencing were then conducted. Student's t-test was used to analyze continuous variables, with statistical significance defined as p < 0.05.</p><p><strong>Results: </strong>A. stephensi TEP15 (AsTEP15) negatively regulated mosquitos' innate immunity and promoted Plasmodium development. AsTEP15 knockdown induced mosquito resistance to malaria parasite melanization during the oocyst stage and significantly reduced sporozoite numbers. Further analysis showed that AsTEP15 mainly negatively affects the TEP1 and immune deficiency (IMD) pathway, thereby inhibiting melanization.</p><p><strong>Conclusions: </strong>We describe a mosquito TEP that negatively regulates immunity, further enriching the functional diversity of TEP family members. In addition, our results suggest that oocysts may exploit TEPs to escape or inhibit mosquito immunity, highlighting potential targets for blocking malaria transmission.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"124"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06772-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Thioester-containing proteins (TEPs) serve as crucial effectors and regulatory components within the innate immune system of mosquitoes. Despite their significance, the mechanisms by which TEPs exert negative regulation on the immune response in mosquitoes remain inadequately understood. This study aims to elucidate the role of TEPs in the negative regulation of melanization, thereby advancing our comprehension of their regulatory function in the immune response.
Methods: We infected female Anopheles stephensi mosquitoes with Plasmodium yoelii by allowing them to feed on pre-infected female Kunming mice. Western blot, quantitative polymerase chain reaction, differential gene expression analyses, and gene silencing were then conducted. Student's t-test was used to analyze continuous variables, with statistical significance defined as p < 0.05.
Results: A. stephensi TEP15 (AsTEP15) negatively regulated mosquitos' innate immunity and promoted Plasmodium development. AsTEP15 knockdown induced mosquito resistance to malaria parasite melanization during the oocyst stage and significantly reduced sporozoite numbers. Further analysis showed that AsTEP15 mainly negatively affects the TEP1 and immune deficiency (IMD) pathway, thereby inhibiting melanization.
Conclusions: We describe a mosquito TEP that negatively regulates immunity, further enriching the functional diversity of TEP family members. In addition, our results suggest that oocysts may exploit TEPs to escape or inhibit mosquito immunity, highlighting potential targets for blocking malaria transmission.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.