Emily A. Chapman , Holden T. Rogers , Zhan Gao , Hsin-Ju Chan , Francisco J. Alvarado , Ying Ge
{"title":"In-depth characterization of S-glutathionylation in ventricular myosin light chain 1 across species by top-down proteomics","authors":"Emily A. Chapman , Holden T. Rogers , Zhan Gao , Hsin-Ju Chan , Francisco J. Alvarado , Ying Ge","doi":"10.1016/j.yjmcc.2025.03.012","DOIUrl":null,"url":null,"abstract":"<div><div>S-glutathionylation (SSG) is increasingly recognized as a critical signaling mechanism in the heart, yet SSG modifications in cardiac sarcomeric proteins remain understudied. Here we identified SSG of the ventricular isoform of myosin light chain 1 (MLC-1v) in human, swine, and mouse cardiac tissues using top-down mass spectrometry (MS)-based proteomics. Our results enabled the accurate identification, quantification, and site-specific localization of SSG in MLC-1v across different species. Notably, the endogenous SSG of MLC-1v was observed in human and swine cardiac tissues but not in mice. Treating non-reduced cardiac tissue lysates with GSSG elevated MLC-1v SSG levels across all three species.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"203 ","pages":"Pages 1-6"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825000586","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
S-glutathionylation (SSG) is increasingly recognized as a critical signaling mechanism in the heart, yet SSG modifications in cardiac sarcomeric proteins remain understudied. Here we identified SSG of the ventricular isoform of myosin light chain 1 (MLC-1v) in human, swine, and mouse cardiac tissues using top-down mass spectrometry (MS)-based proteomics. Our results enabled the accurate identification, quantification, and site-specific localization of SSG in MLC-1v across different species. Notably, the endogenous SSG of MLC-1v was observed in human and swine cardiac tissues but not in mice. Treating non-reduced cardiac tissue lysates with GSSG elevated MLC-1v SSG levels across all three species.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.