Unraveling the genetic underpinnings of mitochondrial traits and associated circulating inflammatory proteins in Alzheimer's disease: Mitochondrial HtrA2-T cell CD5 negative axis.

IF 3.4 3区 医学 Q2 NEUROSCIENCES
Yixi Wang, Zhuokai Wu, Yiheng Zheng, Haimeng Wang, Bin Cheng, Juan Xia
{"title":"Unraveling the genetic underpinnings of mitochondrial traits and associated circulating inflammatory proteins in Alzheimer's disease: Mitochondrial HtrA2-T cell CD5 negative axis.","authors":"Yixi Wang, Zhuokai Wu, Yiheng Zheng, Haimeng Wang, Bin Cheng, Juan Xia","doi":"10.1177/13872877251329517","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundPrevious studies with limited sample sizes have indicated a link between mitochondrial traits, inflammatory proteins, and Alzheimer's disease. The exact causality and their mediation relationships remain unclear.ObjectiveOur study aimed to delve into the genetic underpinnings of mitochondrial function and circulating inflammatory proteins in the pathogenesis of Alzheimer's disease.MethodsWe leveraged aggregated data from the largest genome-wide association study, including 69 mitochondrial traits, 91 circulating inflammatory proteins, and Alzheimer's disease. Bidirectional mendelian randomization (MR) analyses were performed to investigate their primary causal relationships. Thereafter a two-step MR mediation analysis was utilized to clarify the modulating effects of inflammatory proteins on mitochondria and Alzheimer's disease.ResultsOur study identified mitochondrial phenylalanine-tRNA ligase and 4-hydroxy-2-oxoglutarate aldolase as risk factors for Alzheimer's disease, and serine protease HtrA2 and carbonic anhydrase 5A as protective factors against Alzheimer's disease. Four inflammatory proteins (T-cell surface glycoprotein CD5, C-X-C motif chemokine 11, TGF-α, and TNF-related apoptosis-inducing ligand) played protective roles against Alzheimer's disease. Axin-1 and IL-6 increased the risk of Alzheimer's disease. Furthermore, T-cell surface glycoprotein CD5 was found to be a significant mediator between mitochondrial serine protease HTRA2 and Alzheimer's disease with the two-step MR method, accounting for 10.83% of the total effect.ConclusionsOur study emphasized mitochondrial HtrA2-T cell CD5 as a negative axis in Alzheimer's disease, offering novel perspectives on its etiology, pathogenesis, and treatment.</p>","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":" ","pages":"13872877251329517"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/13872877251329517","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BackgroundPrevious studies with limited sample sizes have indicated a link between mitochondrial traits, inflammatory proteins, and Alzheimer's disease. The exact causality and their mediation relationships remain unclear.ObjectiveOur study aimed to delve into the genetic underpinnings of mitochondrial function and circulating inflammatory proteins in the pathogenesis of Alzheimer's disease.MethodsWe leveraged aggregated data from the largest genome-wide association study, including 69 mitochondrial traits, 91 circulating inflammatory proteins, and Alzheimer's disease. Bidirectional mendelian randomization (MR) analyses were performed to investigate their primary causal relationships. Thereafter a two-step MR mediation analysis was utilized to clarify the modulating effects of inflammatory proteins on mitochondria and Alzheimer's disease.ResultsOur study identified mitochondrial phenylalanine-tRNA ligase and 4-hydroxy-2-oxoglutarate aldolase as risk factors for Alzheimer's disease, and serine protease HtrA2 and carbonic anhydrase 5A as protective factors against Alzheimer's disease. Four inflammatory proteins (T-cell surface glycoprotein CD5, C-X-C motif chemokine 11, TGF-α, and TNF-related apoptosis-inducing ligand) played protective roles against Alzheimer's disease. Axin-1 and IL-6 increased the risk of Alzheimer's disease. Furthermore, T-cell surface glycoprotein CD5 was found to be a significant mediator between mitochondrial serine protease HTRA2 and Alzheimer's disease with the two-step MR method, accounting for 10.83% of the total effect.ConclusionsOur study emphasized mitochondrial HtrA2-T cell CD5 as a negative axis in Alzheimer's disease, offering novel perspectives on its etiology, pathogenesis, and treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Alzheimer's Disease
Journal of Alzheimer's Disease 医学-神经科学
CiteScore
6.40
自引率
7.50%
发文量
1327
审稿时长
2 months
期刊介绍: The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信