Gigantic-oxidative atomic-layer-by-layer epitaxy for artificially designed complex oxides.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-11-27 eCollection Date: 2025-04-01 DOI:10.1093/nsr/nwae429
Guangdi Zhou, Haoliang Huang, Fengzhe Wang, Heng Wang, Qishuo Yang, Zihao Nie, Wei Lv, Cui Ding, Yueying Li, Jiayi Lin, Changming Yue, Danfeng Li, Yujie Sun, Junhao Lin, Guang-Ming Zhang, Qi-Kun Xue, Zhuoyu Chen
{"title":"Gigantic-oxidative atomic-layer-by-layer epitaxy for artificially designed complex oxides.","authors":"Guangdi Zhou, Haoliang Huang, Fengzhe Wang, Heng Wang, Qishuo Yang, Zihao Nie, Wei Lv, Cui Ding, Yueying Li, Jiayi Lin, Changming Yue, Danfeng Li, Yujie Sun, Junhao Lin, Guang-Ming Zhang, Qi-Kun Xue, Zhuoyu Chen","doi":"10.1093/nsr/nwae429","DOIUrl":null,"url":null,"abstract":"<p><p>In designing material functionalities for transition metal oxides, lattice structure and <i>d</i>-orbital occupancy are key determinants. However, the modulation of these two factors is inherently limited by the need to balance thermodynamic stability, growth kinetics and stoichiometry precision, particularly for metastable phases. We introduce a methodology, namely gigantic-oxidative atomic-layer-by-layer epitaxy (GOALL-Epitaxy), to enhance oxidation power by three to four orders of magnitude beyond conventional pulsed laser deposition and oxide molecular beam epitaxy, while ensuring atomic-layer-by-layer growth of the designed complex structures. Thermodynamic stability is markedly augmented with stronger oxidation at elevated temperatures, whereas growth kinetics is sustained by using laser ablation at lower temperatures. We demonstrate the accurate growth of complex nickelates and cuprates-especially an artificially designed structure with alternating single and double NiO<sub>2</sub> layers that possess distinct nominal d-orbital occupancy, as a parent of the high-temperature superconductor. GOALL-Epitaxy enables material discovery within the vastly broadened growth parameter space.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwae429"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae429","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In designing material functionalities for transition metal oxides, lattice structure and d-orbital occupancy are key determinants. However, the modulation of these two factors is inherently limited by the need to balance thermodynamic stability, growth kinetics and stoichiometry precision, particularly for metastable phases. We introduce a methodology, namely gigantic-oxidative atomic-layer-by-layer epitaxy (GOALL-Epitaxy), to enhance oxidation power by three to four orders of magnitude beyond conventional pulsed laser deposition and oxide molecular beam epitaxy, while ensuring atomic-layer-by-layer growth of the designed complex structures. Thermodynamic stability is markedly augmented with stronger oxidation at elevated temperatures, whereas growth kinetics is sustained by using laser ablation at lower temperatures. We demonstrate the accurate growth of complex nickelates and cuprates-especially an artificially designed structure with alternating single and double NiO2 layers that possess distinct nominal d-orbital occupancy, as a parent of the high-temperature superconductor. GOALL-Epitaxy enables material discovery within the vastly broadened growth parameter space.

人工设计的复杂氧化物的巨大氧化原子逐层外延。
在设计过渡金属氧化物的材料功能时,晶格结构和d轨道占位是关键的决定因素。然而,这两个因素的调节本质上受到平衡热力学稳定性、生长动力学和化学计量精度的需要的限制,特别是对于亚稳相。我们介绍了一种方法,即巨大氧化原子层外延(goal - epitaxy),以提高氧化能力比传统的脉冲激光沉积和氧化物分子束外延三到四个数量级,同时确保设计的复杂结构的原子层逐层生长。高温下的强氧化可以显著增强热力学稳定性,而在较低温度下使用激光烧蚀可以维持生长动力学。我们证明了复杂的镍酸盐和铜酸盐的精确生长-特别是人工设计的具有不同名义d轨道占用的单层和双层NiO2层交替结构,作为高温超导体的母体。目标外延使材料发现在大大拓宽的生长参数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信