Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters.
Youngha Choi, Kanghyuck Lee, Eun Gyung Seol, Joon Young Kim, Eun Byoul Lee, Hyun Wook Chae, Taehoon Ko, Kyungchul Song
{"title":"Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters.","authors":"Youngha Choi, Kanghyuck Lee, Eun Gyung Seol, Joon Young Kim, Eun Byoul Lee, Hyun Wook Chae, Taehoon Ko, Kyungchul Song","doi":"10.1038/s41366-025-01761-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical impedance analysis (BIA) parameters, highlighting its ability to handle complex, nonlinear variable relationships more effectively than traditional methods such as logistic regression.</p><p><strong>Methods: </strong>The study included 359 youths from the Korea National Health and Nutrition Examination Survey (KNHANES; 16 MS, 343 normal) and 174 youths from real-world clinical data (66 MS, 108 normal). Model 1 used anthropometric data, Model 2 used BIA parameters, and Model 3 combined both. The eXtreme Gradient Boosting trained the models, and area under the receiver operating characteristic curve (AUC) evaluated performance. Shapley value analysis was applied to assess the contribution of each parameter to the model's prediction.</p><p><strong>Results: </strong>The AUCs for Models 1, 2, and 3 were 0.75, 0.66, and 0.90, respectively, in the KNHANES dataset, and 0.56, 0.61, and 0.74, respectively, in the real-world dataset. In pairwise comparison, Model 3 outperformed both Model 1 and Model 2 in both the KNHANES dataset (Model 1 vs. Model 3, p = 0.026; Model 2 vs. Model 3, p = 0.033) and the real-world dataset (Model 1 vs. Model 3, p = 0.035; Model 2 vs. Model 3, p = 0.008). Body fat mass was identified as the most significant contributor to Model 3.</p><p><strong>Conclusion: </strong>The integrated model using both anthropometric and BIA parameters demonstrated strong predictability for pediatric MS, underlining its potential as an effective screening tool for MS in both clinical and general populations.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-025-01761-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical impedance analysis (BIA) parameters, highlighting its ability to handle complex, nonlinear variable relationships more effectively than traditional methods such as logistic regression.
Methods: The study included 359 youths from the Korea National Health and Nutrition Examination Survey (KNHANES; 16 MS, 343 normal) and 174 youths from real-world clinical data (66 MS, 108 normal). Model 1 used anthropometric data, Model 2 used BIA parameters, and Model 3 combined both. The eXtreme Gradient Boosting trained the models, and area under the receiver operating characteristic curve (AUC) evaluated performance. Shapley value analysis was applied to assess the contribution of each parameter to the model's prediction.
Results: The AUCs for Models 1, 2, and 3 were 0.75, 0.66, and 0.90, respectively, in the KNHANES dataset, and 0.56, 0.61, and 0.74, respectively, in the real-world dataset. In pairwise comparison, Model 3 outperformed both Model 1 and Model 2 in both the KNHANES dataset (Model 1 vs. Model 3, p = 0.026; Model 2 vs. Model 3, p = 0.033) and the real-world dataset (Model 1 vs. Model 3, p = 0.035; Model 2 vs. Model 3, p = 0.008). Body fat mass was identified as the most significant contributor to Model 3.
Conclusion: The integrated model using both anthropometric and BIA parameters demonstrated strong predictability for pediatric MS, underlining its potential as an effective screening tool for MS in both clinical and general populations.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.