Muhammad Abdullah Aziz, Bilal Adil, Ijaz Ali, Abdulaziz G Alghamdi
{"title":"Role of biochar and PGPR in improving soil biochemical characteristics and maize growth under Cr contamination.","authors":"Muhammad Abdullah Aziz, Bilal Adil, Ijaz Ali, Abdulaziz G Alghamdi","doi":"10.1080/15226514.2025.2485302","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metals toxicity in soil is increasing globally and bioremediation of these contaminants through sustainable and recalcitrant materials has gained attention in recent years. A greenhouse pot experiment was conducted to investigate the effect of Cr tolerant <i>Bacillus subtilis</i> and <i>Pseudomonas aeruginosa</i> strains along with biochar of different feedstocks on maize plant biochemical attributes and soil health. Results of the study revealed that Cr contamination decreased plant growth attributes whilst the integrated application of <i>B. subtilis</i>+PLB significantly improved root-shoot length (36 and 10% respectively), total chlorophyll (11.29%), and stomatal conductance (11.95%). Under Cr contamination, maize carotenoid, flavonoid, and phenolic contents also improved up to 77.20%, 39.18%, and 7.90% respectively by <i>B. subtilis</i>+PLB treatment. Soil PLFA content, G+, G-, Fungi and actinomycetes activity also alleviated along with antioxidants superoxidase (54%), peroxidase (28.57%), and catalase (89%) under the treatment of <i>B. subtilis</i>+PLB. Additionally, microbial CUE improved up to 70% under <i>B. subtilis</i>+PLB followed by <i>P. aeruginosa</i>+PLB (62%). Moreover, soil nutrient content (TOC, N, P, and K) also showed a great improvement under the combinedcombined application of PGPR and biochar. These findings of the study provide a sustainable solution for the bioremediation of Cr in agricultural soil by improving soil microbial and antioxidative activities.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-15"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2485302","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals toxicity in soil is increasing globally and bioremediation of these contaminants through sustainable and recalcitrant materials has gained attention in recent years. A greenhouse pot experiment was conducted to investigate the effect of Cr tolerant Bacillus subtilis and Pseudomonas aeruginosa strains along with biochar of different feedstocks on maize plant biochemical attributes and soil health. Results of the study revealed that Cr contamination decreased plant growth attributes whilst the integrated application of B. subtilis+PLB significantly improved root-shoot length (36 and 10% respectively), total chlorophyll (11.29%), and stomatal conductance (11.95%). Under Cr contamination, maize carotenoid, flavonoid, and phenolic contents also improved up to 77.20%, 39.18%, and 7.90% respectively by B. subtilis+PLB treatment. Soil PLFA content, G+, G-, Fungi and actinomycetes activity also alleviated along with antioxidants superoxidase (54%), peroxidase (28.57%), and catalase (89%) under the treatment of B. subtilis+PLB. Additionally, microbial CUE improved up to 70% under B. subtilis+PLB followed by P. aeruginosa+PLB (62%). Moreover, soil nutrient content (TOC, N, P, and K) also showed a great improvement under the combinedcombined application of PGPR and biochar. These findings of the study provide a sustainable solution for the bioremediation of Cr in agricultural soil by improving soil microbial and antioxidative activities.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.