Hao Huang, Sijie Liu, Jing Wu, Jiayi Zhu, Jiaxiang Xu, Shuhong Yu, Lingna Bei, Biao Zhang, Yi Luo
{"title":"Buyang Huanwu Decoction Alleviates Ischemic Stroke Injury by Inhibiting Ferroptosis via the Nrf2/GPX4 Pathway.","authors":"Hao Huang, Sijie Liu, Jing Wu, Jiayi Zhu, Jiaxiang Xu, Shuhong Yu, Lingna Bei, Biao Zhang, Yi Luo","doi":"10.2147/DDDT.S503424","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Acute ischemic stroke poses major challenges due to high disability and mortality rates. Ferroptosis, a form of regulated cell death triggered by iron-induced oxidative stress, plays a key role in stroke injury. Despite its long history in stroke treatment, the mechanism of Buyang Huanwu Decoction (BHD) in ferroptosis remains unclear.</p><p><strong>Methods: </strong>Network pharmacology predicted BHD's active components and pathways, while Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) confirmed its main ingredients. Middle Cerebral Artery Occlusion (MCAO) was induced in C57 mice, with neurological deficits and infarct size assessed by Longa scoring and TTC staining. Histopathological and ultrastructural changes were assessed by staining and electron microscopy, and biochemical markers (MDA, GSH, SOD, Fe²<sup>+</sup>) measured by kits. Western blotting and qPCR analyzed ferroptosis-related proteins, Nrf2 localization, and gene expression. In vitro, HT22 cells viability and ROS levels were assessed under Oxygen-Glucose Deprivation/Reoxygenation (OGD/R) conditions. Protein expression, Nrf2 interactions, and nuclear translocation were also investigated.</p><p><strong>Results: </strong>Network pharmacology showed BHD targets key pathways in cerebral infarction, including ferroptosis and antioxidant pathways. BHD improved neurological function and reduced the infarct size in MCAO mice by 10% - 50%, and also significantly decreased the levels of oxidative stress markers (MDA, Fe<sup>2+</sup>) while increasing the activities of antioxidants (GSH, SOD). Histopathological and ultrastructural analyses demonstrated reduced neuronal damage and improved mitochondrial structure. Western blot and qPCR indicated upregulation of GPX4 and Nrf2, downregulation of Keap1, and Nrf2 nuclear translocation. In vitro, BHD enhanced HT22 cell viability and reduced ROS under stress. Protein analysis confirmed increased Nrf2, GPX4, and HO-1, with decreased Keap1 and enhanced Nrf2 nuclear translocation. Nrf2 inhibitor experiments confirmed BHD's effects are Nrf2-mediated.</p><p><strong>Conclusion: </strong>In pre-clinical studies, BHD exerts neuroprotective effects in ischemic stroke by inhibiting ferroptosis through the Nrf2/GPX4 pathway.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"2285-2305"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S503424","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Acute ischemic stroke poses major challenges due to high disability and mortality rates. Ferroptosis, a form of regulated cell death triggered by iron-induced oxidative stress, plays a key role in stroke injury. Despite its long history in stroke treatment, the mechanism of Buyang Huanwu Decoction (BHD) in ferroptosis remains unclear.
Methods: Network pharmacology predicted BHD's active components and pathways, while Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) confirmed its main ingredients. Middle Cerebral Artery Occlusion (MCAO) was induced in C57 mice, with neurological deficits and infarct size assessed by Longa scoring and TTC staining. Histopathological and ultrastructural changes were assessed by staining and electron microscopy, and biochemical markers (MDA, GSH, SOD, Fe²+) measured by kits. Western blotting and qPCR analyzed ferroptosis-related proteins, Nrf2 localization, and gene expression. In vitro, HT22 cells viability and ROS levels were assessed under Oxygen-Glucose Deprivation/Reoxygenation (OGD/R) conditions. Protein expression, Nrf2 interactions, and nuclear translocation were also investigated.
Results: Network pharmacology showed BHD targets key pathways in cerebral infarction, including ferroptosis and antioxidant pathways. BHD improved neurological function and reduced the infarct size in MCAO mice by 10% - 50%, and also significantly decreased the levels of oxidative stress markers (MDA, Fe2+) while increasing the activities of antioxidants (GSH, SOD). Histopathological and ultrastructural analyses demonstrated reduced neuronal damage and improved mitochondrial structure. Western blot and qPCR indicated upregulation of GPX4 and Nrf2, downregulation of Keap1, and Nrf2 nuclear translocation. In vitro, BHD enhanced HT22 cell viability and reduced ROS under stress. Protein analysis confirmed increased Nrf2, GPX4, and HO-1, with decreased Keap1 and enhanced Nrf2 nuclear translocation. Nrf2 inhibitor experiments confirmed BHD's effects are Nrf2-mediated.
Conclusion: In pre-clinical studies, BHD exerts neuroprotective effects in ischemic stroke by inhibiting ferroptosis through the Nrf2/GPX4 pathway.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.