Multibiomarkers approach to assess the acute toxicity of chlorantraniliprole in Cnesterodon decemmaculatus (Jenyns, 1842) (Cyprinodontiformes: Poeciliidae).

IF 3.6 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
César Rodríguez-Bolaña, Andrés Pérez-Parada, Andrea Cecilia Hued, Alejo Fabian Bonifacio, Marina Tagliaferro, Franco Teixeira de Mello
{"title":"Multibiomarkers approach to assess the acute toxicity of chlorantraniliprole in Cnesterodon decemmaculatus (Jenyns, 1842) (Cyprinodontiformes: Poeciliidae).","authors":"César Rodríguez-Bolaña, Andrés Pérez-Parada, Andrea Cecilia Hued, Alejo Fabian Bonifacio, Marina Tagliaferro, Franco Teixeira de Mello","doi":"10.1093/etojnl/vgaf088","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorantraniliprole (CHL) is the most widely used diamide worldwide, with South America being its primary market. Despite its growing application, the environmental effects of CHL on non-target organisms, mainly native fish species, remain understudied. In the present study, the sublethal effects of CHL were assessed in Cnesterodon decemmaculatus by acute exposure (96 h) to 1/10 (1.5 mg/L) and 1/100 (0.15 mg/L) of the LC50, using a multi-biomarker approach across different levels of biological organization. Locomotor activity (distance traveled, time immobile, average and maximum speeds), somatic index, enzymatic activities of acetyl-cholinesterase (AChE) in muscle and brain, catalase (CAT) in muscle, brain, gills and liver, glutathione-S-transferase (GST) in gills and liver, aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in the liver were measured. The primary effect of exposure was the reduction in locomotor activity, which appears to be more closely related to CHL's mode of action than cholinergic effects. The muscles and brain were the organs most affected by oxidative stress, and adaptive responses involving AChE, CAT, and GST were observed, highlighting the organism's ability to manage oxidative stress. The IBR index indicates a dose-dependent relationship, with individuals exposed to T2 exhibiting more than twice the IBR value of those exposed to T1 and nearly four times that of the control group. Our results indicate that insect-specific compounds like diamides can severely affect non-target species, potentially affecting survival and growth rates in aquatic species, even at sublethal concentrations. For muscle-targeted insecticides, locomotor activity is one of the most effective biomarkers for assessing the impact of exposure. This study represents the first report on the toxicity of a diamide in a native South American model fish, a key bioindicator in assessing ecological health.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/etojnl/vgaf088","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorantraniliprole (CHL) is the most widely used diamide worldwide, with South America being its primary market. Despite its growing application, the environmental effects of CHL on non-target organisms, mainly native fish species, remain understudied. In the present study, the sublethal effects of CHL were assessed in Cnesterodon decemmaculatus by acute exposure (96 h) to 1/10 (1.5 mg/L) and 1/100 (0.15 mg/L) of the LC50, using a multi-biomarker approach across different levels of biological organization. Locomotor activity (distance traveled, time immobile, average and maximum speeds), somatic index, enzymatic activities of acetyl-cholinesterase (AChE) in muscle and brain, catalase (CAT) in muscle, brain, gills and liver, glutathione-S-transferase (GST) in gills and liver, aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in the liver were measured. The primary effect of exposure was the reduction in locomotor activity, which appears to be more closely related to CHL's mode of action than cholinergic effects. The muscles and brain were the organs most affected by oxidative stress, and adaptive responses involving AChE, CAT, and GST were observed, highlighting the organism's ability to manage oxidative stress. The IBR index indicates a dose-dependent relationship, with individuals exposed to T2 exhibiting more than twice the IBR value of those exposed to T1 and nearly four times that of the control group. Our results indicate that insect-specific compounds like diamides can severely affect non-target species, potentially affecting survival and growth rates in aquatic species, even at sublethal concentrations. For muscle-targeted insecticides, locomotor activity is one of the most effective biomarkers for assessing the impact of exposure. This study represents the first report on the toxicity of a diamide in a native South American model fish, a key bioindicator in assessing ecological health.

采用多生物标志物方法评价氯虫腈对十二斑叶鳗的急性毒性(Jenyns, 1842)。
氯虫腈(chlorantranilprole, CHL)是世界上使用最广泛的二胺类药物,南美洲是其主要市场。尽管CHL的应用越来越广泛,但其对非目标生物(主要是本地鱼类)的环境影响仍未得到充分研究。在本研究中,采用不同生物组织水平的多生物标志物方法,通过急性暴露(96 h)于1/10 (1.5 mg/L)和1/100 (0.15 mg/L)的LC50,评估了CHL对十二斑鳗的亚致死效应。测定运动活性(运动距离、静止时间、平均和最高速度)、躯体指数、肌肉和脑乙酰胆碱酯酶(AChE)活性、肌肉、脑、鳃和肝脏过氧化氢酶(CAT)活性、鳃和肝脏谷胱甘肽- s -转移酶(GST)活性、天冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、AST/ALT比值和肝脏碱性磷酸酶(ALP)活性。暴露的主要影响是运动活动的减少,这似乎与CHL的作用方式比胆碱能作用更密切相关。肌肉和大脑是受氧化应激影响最大的器官,观察到包括AChE、CAT和GST的适应性反应,突出了生物体管理氧化应激的能力。IBR指数显示出剂量依赖关系,暴露于T2的个体的IBR值是暴露于T1的个体的两倍多,是对照组的近四倍。我们的研究结果表明,昆虫特异性化合物如二胺类化合物可以严重影响非目标物种,甚至在亚致死浓度下也可能影响水生物种的生存和生长速度。对于肌肉靶向杀虫剂,运动活动是评估暴露影响最有效的生物标志物之一。本研究首次报道了二胺对南美原生模式鱼的毒性,这是评估生态健康的关键生物指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
9.80%
发文量
265
审稿时长
3.4 months
期刊介绍: The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...] Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信