Dose-dependent inhibition of photosynthesis and redox alterations in cymbopogon nardus exposed to cadmium and chromium: evidence through the activity of RUBISCO.
{"title":"Dose-dependent inhibition of photosynthesis and redox alterations in <i>cymbopogon nardus</i> exposed to cadmium and chromium: evidence through the activity of RUBISCO.","authors":"Madhusmita Nayak, Deepak Kumar Patra","doi":"10.1080/15226514.2025.2485308","DOIUrl":null,"url":null,"abstract":"<p><p>This study comprehensively assessed the physiological adaptations of <i>Cymbopogon nardus</i> (citronella) exposed to varying concentrations (25-100 mg.kg<sup>-1</sup>) of cadmium (Cd) and chromium (Cr). The phytoremediation potential was also evaluated over a 60d greenhouse experiment with triplicate replication, where Cd and Cr were introduced as cadmium chloride (CdCl<sub>2</sub>) and potassium dichromate (K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>), respectively. While elevated metal concentrations adversely affected plant growth and chlorophyll content, <i>C. nardus</i> exhibited remarkable tolerance. This was evidenced by the upregulation of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidise (APX), alongside increases in reduced glutathione (GSH) and proline, effectively mitigating oxidative stress. However, high-intensity metal exposure eventually overwhelmed these systems, leading to reactive oxygen species (ROS) accumulation and oxidative damage. Notably, Western blot analysis revealed that Cr distinctly induced a greater reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity compared to Cd, highlighting nuanced physiological responses to different metals. The plant demonstrated substantial phytoremediation capacity, achieving bio-concentration factors (BCF) of 0.25 for Cd and 0.28 for Cr at 100 mg.kg<sup>-1</sup>, and effectively removing 75.1% of Cd and 72.1% of Cr from contaminated soil. The novelty of this study lies in its comprehensive analysis of physiological adaptations and phytoremediation capabilities of <i>C. nardus</i> under both Cd and Cr stress, revealing its potential as a robust phytoremediator. The observed differential impact on Rubisco activity and efficient metal removal capacity underscore the plant's suitability for remediating soils contaminated with these prevalent heavy metals.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-16"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2485308","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study comprehensively assessed the physiological adaptations of Cymbopogon nardus (citronella) exposed to varying concentrations (25-100 mg.kg-1) of cadmium (Cd) and chromium (Cr). The phytoremediation potential was also evaluated over a 60d greenhouse experiment with triplicate replication, where Cd and Cr were introduced as cadmium chloride (CdCl2) and potassium dichromate (K2Cr2O7), respectively. While elevated metal concentrations adversely affected plant growth and chlorophyll content, C. nardus exhibited remarkable tolerance. This was evidenced by the upregulation of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidise (APX), alongside increases in reduced glutathione (GSH) and proline, effectively mitigating oxidative stress. However, high-intensity metal exposure eventually overwhelmed these systems, leading to reactive oxygen species (ROS) accumulation and oxidative damage. Notably, Western blot analysis revealed that Cr distinctly induced a greater reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity compared to Cd, highlighting nuanced physiological responses to different metals. The plant demonstrated substantial phytoremediation capacity, achieving bio-concentration factors (BCF) of 0.25 for Cd and 0.28 for Cr at 100 mg.kg-1, and effectively removing 75.1% of Cd and 72.1% of Cr from contaminated soil. The novelty of this study lies in its comprehensive analysis of physiological adaptations and phytoremediation capabilities of C. nardus under both Cd and Cr stress, revealing its potential as a robust phytoremediator. The observed differential impact on Rubisco activity and efficient metal removal capacity underscore the plant's suitability for remediating soils contaminated with these prevalent heavy metals.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.