{"title":"Intact spermatogenesis in an azoospermic patient with AZFa (sY84 and sY86) microdeletion and a homozygous TG12-5T variant in CFTR.","authors":"Yifan Sun, Beifen Zhong, Zizhou Meng, Yuxiang Zhang, Zheng Li, Chencheng Yao","doi":"10.1186/s12610-025-00260-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Azoospermia, the most severe form of male infertility, is categorized into two types: non-obstructive azoospermia (NOA) and obstructive azoospermia (OA), which exhibit significant genetic heterogeneity. Azoospermia factor (AZF) deletion is a common cause of NOA, whereas congenital bilateral absence of the vas deferens (CBAVD), a severe subtype of OA, is frequently linked to cystic fibrosis transmembrane conductance regulator (CFTR) gene variants. This case report is the first to document the coexistence of a partial AZFa microdeletion and a homozygous CFTR variant in a CBAVD-affected azoospermic patient with intact spermatogenesis.</p><p><strong>Case presentation: </strong>A 32-year-old man presented with primary infertility and azoospermia. Clinical evaluation revealed CBAVD (normal hormone levels, low semen volume, pH 6.0, and absence of the vas deferens). Genetic analysis accidentally revealed a 384.9 kb AZFa deletion (sY84 and sY86, but not sY1064, 1182) that removed USP9Y but retained DDX3Y in the proband, his fertile brother, and his father. A homozygous CFTR variant (TG12-5T) was also detected in the proband and his brother and was inherited from heterozygous parental carriers. Microdissection testicular sperm extraction (micro-TESE) revealed intact spermatogenesis, confirmed by histology and immunofluorescence, indicating normal germ cell development.</p><p><strong>Conclusion: </strong>This case expands the intricate genetic spectrum of azoospermia by illustrating the critical role of DDX3Y in the AZFa region in spermatogenesis and the variable penetrance of CFTR variant (TG12-5T) in CBAVD. These insights may refine diagnostic strategies and underscore the necessity for tailored fertility management in individuals with multifactorial genetic anomalies.</p>","PeriodicalId":8730,"journal":{"name":"Basic and Clinical Andrology","volume":"35 1","pages":"13"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Andrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12610-025-00260-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Azoospermia, the most severe form of male infertility, is categorized into two types: non-obstructive azoospermia (NOA) and obstructive azoospermia (OA), which exhibit significant genetic heterogeneity. Azoospermia factor (AZF) deletion is a common cause of NOA, whereas congenital bilateral absence of the vas deferens (CBAVD), a severe subtype of OA, is frequently linked to cystic fibrosis transmembrane conductance regulator (CFTR) gene variants. This case report is the first to document the coexistence of a partial AZFa microdeletion and a homozygous CFTR variant in a CBAVD-affected azoospermic patient with intact spermatogenesis.
Case presentation: A 32-year-old man presented with primary infertility and azoospermia. Clinical evaluation revealed CBAVD (normal hormone levels, low semen volume, pH 6.0, and absence of the vas deferens). Genetic analysis accidentally revealed a 384.9 kb AZFa deletion (sY84 and sY86, but not sY1064, 1182) that removed USP9Y but retained DDX3Y in the proband, his fertile brother, and his father. A homozygous CFTR variant (TG12-5T) was also detected in the proband and his brother and was inherited from heterozygous parental carriers. Microdissection testicular sperm extraction (micro-TESE) revealed intact spermatogenesis, confirmed by histology and immunofluorescence, indicating normal germ cell development.
Conclusion: This case expands the intricate genetic spectrum of azoospermia by illustrating the critical role of DDX3Y in the AZFa region in spermatogenesis and the variable penetrance of CFTR variant (TG12-5T) in CBAVD. These insights may refine diagnostic strategies and underscore the necessity for tailored fertility management in individuals with multifactorial genetic anomalies.
期刊介绍:
Basic and Clinical Andrology is an open access journal in the domain of andrology covering all aspects of male reproductive and sexual health in both human and animal models. The journal aims to bring to light the various clinical advancements and research developments in andrology from the international community.