The simulation-cum-ROC approach: A new approach to generate tailored cutoffs for fit indices through simulation and ROC analysis.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Katharina Groskurth, Nivedita Bhaktha, Clemens M Lechner
{"title":"The simulation-cum-ROC approach: A new approach to generate tailored cutoffs for fit indices through simulation and ROC analysis.","authors":"Katharina Groskurth, Nivedita Bhaktha, Clemens M Lechner","doi":"10.3758/s13428-025-02638-x","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values (e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit valid judgments of model fit only in empirical settings similar to the simulation scenarios from which these cutoffs originate. This is because fit indices are not only sensitive to misspecification but are also susceptible to various model, estimation, and data characteristics. As a solution, methodologists have proposed four principal approaches to obtain so-called tailored cutoffs, which are generated specifically for a given setting. Here, we review these approaches. We find that none of these approaches provides guidelines on which fit index (out of all fit indices of interest) is best suited for evaluating whether the model fits the data in the setting of interest. Therefore, we propose a novel approach combining a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. This so-called simulation-cum-ROC approach generates tailored cutoffs and additionally identifies the most reliable fit indices in the setting of interest. We provide R code and a Shiny app for an easy implementation of the approach. No prior knowledge of Monte Carlo simulations or ROC analysis is needed to generate tailored cutoffs with the simulation-cum-ROC approach.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 5","pages":"135"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02638-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate model fit in structural equation modeling, researchers commonly compare fit indices against fixed cutoff values (e.g., CFI ≥ .950). However, methodologists have cautioned against overgeneralizing cutoffs, highlighting that cutoffs permit valid judgments of model fit only in empirical settings similar to the simulation scenarios from which these cutoffs originate. This is because fit indices are not only sensitive to misspecification but are also susceptible to various model, estimation, and data characteristics. As a solution, methodologists have proposed four principal approaches to obtain so-called tailored cutoffs, which are generated specifically for a given setting. Here, we review these approaches. We find that none of these approaches provides guidelines on which fit index (out of all fit indices of interest) is best suited for evaluating whether the model fits the data in the setting of interest. Therefore, we propose a novel approach combining a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. This so-called simulation-cum-ROC approach generates tailored cutoffs and additionally identifies the most reliable fit indices in the setting of interest. We provide R code and a Shiny app for an easy implementation of the approach. No prior knowledge of Monte Carlo simulations or ROC analysis is needed to generate tailored cutoffs with the simulation-cum-ROC approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信