{"title":"The Impact of T-cell Exhaustion Dynamics on Tumour-Immune Interactions and Tumour Growth.","authors":"Nicholas Lai, Alexis Farman, Helen M Byrne","doi":"10.1007/s11538-025-01433-1","DOIUrl":null,"url":null,"abstract":"<p><p>Tumours evade immune surveillance through a number of different immunosuppressive mechanisms. One such mechanism causes cytotoxic T-cells, a major driving force of the immune system, to differentiate to a state of 'exhaustion', rendering them less effective at killing tumour cells. We present a structured mathematical model that focuses on T-cell exhaustion and its effect on tumour growth. We compartmentalise cytotoxic T-cells into discrete subgroups based on their exhaustion level, which affects their ability to kill tumour cells. We show that the model reduces to a simpler system of ordinary differential equations (ODEs) that describes the time evolution of the total number of T-cells, their mean exhaustion level and the total number of tumour cells. Numerical simulations of the model equations reveal how the exhaustion distribution of T-cells changes over time and how it influences the tumour's growth dynamics. Complementary bifurcation analysis shows how altering key parameters significantly reduces the tumour burden, highlighting exhaustion as a promising target for immunotherapy. Finally, we derive a continuum approximation of the discrete ODE model, which admits analytical solutions that provide complementary insight into T-cell exhaustion dynamics and their effect on tumour growth.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 5","pages":"61"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01433-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumours evade immune surveillance through a number of different immunosuppressive mechanisms. One such mechanism causes cytotoxic T-cells, a major driving force of the immune system, to differentiate to a state of 'exhaustion', rendering them less effective at killing tumour cells. We present a structured mathematical model that focuses on T-cell exhaustion and its effect on tumour growth. We compartmentalise cytotoxic T-cells into discrete subgroups based on their exhaustion level, which affects their ability to kill tumour cells. We show that the model reduces to a simpler system of ordinary differential equations (ODEs) that describes the time evolution of the total number of T-cells, their mean exhaustion level and the total number of tumour cells. Numerical simulations of the model equations reveal how the exhaustion distribution of T-cells changes over time and how it influences the tumour's growth dynamics. Complementary bifurcation analysis shows how altering key parameters significantly reduces the tumour burden, highlighting exhaustion as a promising target for immunotherapy. Finally, we derive a continuum approximation of the discrete ODE model, which admits analytical solutions that provide complementary insight into T-cell exhaustion dynamics and their effect on tumour growth.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.