Chaofeng Wang, Bangjun Zhou, Yi Zhang, Lirong Zeng
{"title":"Plant ubiquitin E2 enzymes UBC32, UBC33, and UBC34 are involved in ERAD and function in host stress tolerance.","authors":"Chaofeng Wang, Bangjun Zhou, Yi Zhang, Lirong Zeng","doi":"10.1186/s12870-025-06419-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a critical component of the ER-mediated protein quality control (ERQC) system and plays a vital role in plant stress responses. However, the ubiquitination machinery underlying plant ERAD-particularly the ubiquitin-conjugating enzymes (E2s)-and their contributions to stress tolerance remain poorly understood.</p><p><strong>Results: </strong>In this study, we identified UBC32, UBC33, and UBC34 as ER-localized ubiquitin E2 enzymes involved in ERAD and demonstrated their roles in biotic and abiotic stress tolerance in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). In response to biotic stress, UBC33 and UBC34 collectively contribute more substantially than UBC32 to plant immunity against Pseudomonas syringae pv. tomato (Pst). Under abiotic stress and ER stress induced by tunicamycin (TM), all three E2s play important roles. Notably, mutation of UBC32 enhances tolerance to TM-induced ER stress, whereas the loss of function in UBC33 or UBC34 suppresses this response. Additionally, UBC32, UBC33, and UBC34 act synergistically in Arabidopsis seed germination under salt stress and abscisic acid (ABA) treatment. While the single mutants atubc32, atubc33, and atubc34 exhibit germination rates comparable to Col-0 under salt stress or ABA treatment, the double mutants atubc32/33, atubc32/34, and atubc33/34 show a significantly greater reduction in germination rate. Interestingly, the atubc32/33/34 triple mutant exhibits a seed germination rate under salt stress and ABA treatment, as well as a level of host immunity to Pst, comparable to that of the atubc33/34 and atubc32/34 double mutants.</p><p><strong>Conclusions: </strong>Our findings establish UBC32, UBC33, and UBC34 as key components of the plant ERAD machinery, contributing to plant tolerance to both abiotic and biotic stress. Despite their close phylogenetic relationship, these E2 enzymes exhibit redundant, synergistic, or antagonistic roles depending on the specific stress response pathway, underscoring the complexity of their functional interactions.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"412"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06419-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a critical component of the ER-mediated protein quality control (ERQC) system and plays a vital role in plant stress responses. However, the ubiquitination machinery underlying plant ERAD-particularly the ubiquitin-conjugating enzymes (E2s)-and their contributions to stress tolerance remain poorly understood.
Results: In this study, we identified UBC32, UBC33, and UBC34 as ER-localized ubiquitin E2 enzymes involved in ERAD and demonstrated their roles in biotic and abiotic stress tolerance in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). In response to biotic stress, UBC33 and UBC34 collectively contribute more substantially than UBC32 to plant immunity against Pseudomonas syringae pv. tomato (Pst). Under abiotic stress and ER stress induced by tunicamycin (TM), all three E2s play important roles. Notably, mutation of UBC32 enhances tolerance to TM-induced ER stress, whereas the loss of function in UBC33 or UBC34 suppresses this response. Additionally, UBC32, UBC33, and UBC34 act synergistically in Arabidopsis seed germination under salt stress and abscisic acid (ABA) treatment. While the single mutants atubc32, atubc33, and atubc34 exhibit germination rates comparable to Col-0 under salt stress or ABA treatment, the double mutants atubc32/33, atubc32/34, and atubc33/34 show a significantly greater reduction in germination rate. Interestingly, the atubc32/33/34 triple mutant exhibits a seed germination rate under salt stress and ABA treatment, as well as a level of host immunity to Pst, comparable to that of the atubc33/34 and atubc32/34 double mutants.
Conclusions: Our findings establish UBC32, UBC33, and UBC34 as key components of the plant ERAD machinery, contributing to plant tolerance to both abiotic and biotic stress. Despite their close phylogenetic relationship, these E2 enzymes exhibit redundant, synergistic, or antagonistic roles depending on the specific stress response pathway, underscoring the complexity of their functional interactions.
期刊介绍:
BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.