Zinc eluted from glassware is a risk factor for embryo development in human and animal assisted reproduction†.

IF 3.1 2区 生物学 Q2 REPRODUCTIVE BIOLOGY
Tatsuma Yao, Hisato Kobayashi, Tatsuki Hirai, Yuta Tokuoka, Mikiko Tokoro, Yuta Asayama, Yuka Suzuki, Yu Hatano, Hiroki Ikeda, Satoshi Sugimura, Takuya Yamamoto, Takahiro G Yamada, Yoshihiko Hosoi, Akira Funahashi, Noritaka Fukunaga, Yoshimasa Asada, Kazuki Kurimoto, Kazuo Yamagata
{"title":"Zinc eluted from glassware is a risk factor for embryo development in human and animal assisted reproduction†.","authors":"Tatsuma Yao, Hisato Kobayashi, Tatsuki Hirai, Yuta Tokuoka, Mikiko Tokoro, Yuta Asayama, Yuka Suzuki, Yu Hatano, Hiroki Ikeda, Satoshi Sugimura, Takuya Yamamoto, Takahiro G Yamada, Yoshihiko Hosoi, Akira Funahashi, Noritaka Fukunaga, Yoshimasa Asada, Kazuki Kurimoto, Kazuo Yamagata","doi":"10.1093/biolre/ioaf050","DOIUrl":null,"url":null,"abstract":"<p><p>In assisted reproduction, many factors in the culture environment, including light, temperature, pH, and culture media, can reduce preimplantation embryo viability. Laboratory glassware is also a known risk factor for in vitro embryos; however, the underlying mechanisms that disrupt embryonic development remain unclear. We identified Zn eluted from glassware as an embryotoxic substance. In mouse embryos, Zn induced delayed development, abnormalities in chromosome segregation, cytokinesis, zygotic gene activation (e.g. Zscan4a and murine endogenous retrovirus with leucine, also known as MERVL), and aberrantly upregulated developmental gene expression (e.g. Hoxa1, Hoxb9, T, and Fgf8) that could be mediated through metal regulatory transcription factors (e.g. Mtf1). Subsequently, Zn exposure led to significantly reduced blastocyst formation. Post-implantation, Zn-exposed embryos were associated with normal birth rates, however, the birth weight increased by an average of 18% compared with embryos cultured without Zn. Furthermore, Zn exposure affected the development of bovine and human embryos, with species-based variation in the strength and timing of these effects. To mitigate these embryotoxic effects, we identified a method to prevent glass toxicity using chelating agents. This research not only highlights the importance of risk control in embryo culture but also facilitates the development of safe and effective methods for assisted reproduction.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioaf050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In assisted reproduction, many factors in the culture environment, including light, temperature, pH, and culture media, can reduce preimplantation embryo viability. Laboratory glassware is also a known risk factor for in vitro embryos; however, the underlying mechanisms that disrupt embryonic development remain unclear. We identified Zn eluted from glassware as an embryotoxic substance. In mouse embryos, Zn induced delayed development, abnormalities in chromosome segregation, cytokinesis, zygotic gene activation (e.g. Zscan4a and murine endogenous retrovirus with leucine, also known as MERVL), and aberrantly upregulated developmental gene expression (e.g. Hoxa1, Hoxb9, T, and Fgf8) that could be mediated through metal regulatory transcription factors (e.g. Mtf1). Subsequently, Zn exposure led to significantly reduced blastocyst formation. Post-implantation, Zn-exposed embryos were associated with normal birth rates, however, the birth weight increased by an average of 18% compared with embryos cultured without Zn. Furthermore, Zn exposure affected the development of bovine and human embryos, with species-based variation in the strength and timing of these effects. To mitigate these embryotoxic effects, we identified a method to prevent glass toxicity using chelating agents. This research not only highlights the importance of risk control in embryo culture but also facilitates the development of safe and effective methods for assisted reproduction.

玻璃器皿中洗脱出的锌是人类和动物辅助生殖过程中胚胎发育的风险因素†。
在辅助生殖中,培养环境中的许多因素,包括光、温度、pH和培养基,都会降低着床前胚胎的存活率。实验室玻璃器皿也是体外胚胎的已知危险因素;然而,破坏胚胎发育的潜在机制仍不清楚。我们确定从玻璃器皿中洗脱的锌是一种胚胎毒性物质。在小鼠胚胎中,锌诱导发育延迟,染色体分离异常,细胞分裂,合子基因激活(如Zscan4a和小鼠内源性带leucine的逆转录病毒,也称为MERVL),以及可通过金属调节转录因子(如Mtf1)介导的发育基因表达异常上调(如Hoxa1, Hoxb9, T和Fgf8)。随后,锌暴露导致囊胚形成显著减少。植入后,接触锌的胚胎与正常出生率相关,但与未接触锌的胚胎相比,出生体重平均增加18%。此外,锌暴露影响了牛和人类胚胎的发育,这些影响的强度和时间因物种而异。为了减轻这些胚胎毒性作用,我们确定了一种使用螯合剂防止玻璃毒性的方法。本研究不仅强调了胚胎培养过程中风险控制的重要性,而且有助于开发安全有效的辅助生殖方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of Reproduction
Biology of Reproduction 生物-生殖生物学
CiteScore
6.30
自引率
5.60%
发文量
214
审稿时长
1 months
期刊介绍: Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信