{"title":"miR-32-5p suppresses the progression of hepatocellular carcinoma by regulating the GSK3β/NF-κB signaling.","authors":"Guangzhi Wang, Qianqian Yang, Yaqi Han, Yunlong Zhang, Wei Pan, Zhongliang Ma, Hui Tian, Xudong Qu","doi":"10.3724/abbs.2025038","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a highly fatal form of malignancy that seriously threatens patient survival. The global 5-year survival rate for HCC patients ranges from 15% to 19%, and nearly 80% of patients are diagnosed at an advanced stage. Therefore, exploring the mechanism of HCC development and identifying biomarkers and therapeutic targets for HCC are vital. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs, are 20-24 nucleotides (nt) long. They play pivotal roles in modulating the progression of diverse diseases. The specific role of miR-32-5p in the development of HCC remains unclear. In this study, qRT-PCR is utilized to precisely determine the downregulated expression levels of miR-32-5p in HCC. Subsequently, functional analysis reveals the suppressive role of miR-32-5p in modulating the proliferative and migratory capabilities of HCC cells. Glycogen synthase kinase 3β (GSK3β) has emerged as a potential target of miR-32-5p, which is confirmed through a dual-luciferase reporter assay. Notably, the expression of GSK3β in HCC tissue specimens is negatively correlated with the abundance of miR-32-5p, and patients with high GSK3β expression have shorter survival time. Furthermore, the targeted downregulation of GSK3β remarkably impedes the proliferation and migration of tumor cells. This study suggests that miR-32-5p inhibits the proliferation and migration of HCC through regulating the GSK3β/NF-κB signaling pathway. Therefore, this study reveals that miR-32-5p exerts its suppressive effect on HCC progression, suggesting that it is a promising target for both diagnostic and targeted therapeutic interventions against HCC.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2025038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal form of malignancy that seriously threatens patient survival. The global 5-year survival rate for HCC patients ranges from 15% to 19%, and nearly 80% of patients are diagnosed at an advanced stage. Therefore, exploring the mechanism of HCC development and identifying biomarkers and therapeutic targets for HCC are vital. MicroRNAs (miRNAs), a class of noncoding single-stranded RNAs, are 20-24 nucleotides (nt) long. They play pivotal roles in modulating the progression of diverse diseases. The specific role of miR-32-5p in the development of HCC remains unclear. In this study, qRT-PCR is utilized to precisely determine the downregulated expression levels of miR-32-5p in HCC. Subsequently, functional analysis reveals the suppressive role of miR-32-5p in modulating the proliferative and migratory capabilities of HCC cells. Glycogen synthase kinase 3β (GSK3β) has emerged as a potential target of miR-32-5p, which is confirmed through a dual-luciferase reporter assay. Notably, the expression of GSK3β in HCC tissue specimens is negatively correlated with the abundance of miR-32-5p, and patients with high GSK3β expression have shorter survival time. Furthermore, the targeted downregulation of GSK3β remarkably impedes the proliferation and migration of tumor cells. This study suggests that miR-32-5p inhibits the proliferation and migration of HCC through regulating the GSK3β/NF-κB signaling pathway. Therefore, this study reveals that miR-32-5p exerts its suppressive effect on HCC progression, suggesting that it is a promising target for both diagnostic and targeted therapeutic interventions against HCC.
期刊介绍:
Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.