Eelis Solala, Wen-Hua Xu, Pauli Parkkinen, Dage Sundholm
{"title":"Numerical Calculations of Electric Response Properties Using the Bubbles and Cube Framework.","authors":"Eelis Solala, Wen-Hua Xu, Pauli Parkkinen, Dage Sundholm","doi":"10.1021/acs.jpca.5c00849","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed a fully numerical method for calculating the response of the Hartree-Fock orbitals to an external electric field. The Hartree-Fock orbitals are optimized using Green's function methods by iterative numerical integration of the convolution with the Helmholtz kernel. The orbital response is obtained analogously by iterative numerical integration of the convolution with the Helmholtz kernel of the Sternheimer equation. The orbitals are expanded in atom-centered functions (bubbles), consisting of numerical radial functions multiplied by spherical harmonics. The remainder, i.e., the difference between the bubble expansion and the exact orbitals, is expanded in numerical tensorial local basis functions on a three-dimensional grid (cube). The methods have been tested by calculating polarizabilities for He, H<sub>2</sub>, and NH<sub>3</sub>, which are compared to the literature values.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00849","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have developed a fully numerical method for calculating the response of the Hartree-Fock orbitals to an external electric field. The Hartree-Fock orbitals are optimized using Green's function methods by iterative numerical integration of the convolution with the Helmholtz kernel. The orbital response is obtained analogously by iterative numerical integration of the convolution with the Helmholtz kernel of the Sternheimer equation. The orbitals are expanded in atom-centered functions (bubbles), consisting of numerical radial functions multiplied by spherical harmonics. The remainder, i.e., the difference between the bubble expansion and the exact orbitals, is expanded in numerical tensorial local basis functions on a three-dimensional grid (cube). The methods have been tested by calculating polarizabilities for He, H2, and NH3, which are compared to the literature values.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.