Chuhan Xu, Jiayao Ma, Lei Fu, Xinmeng Liu, Lei Zhang, Yan Chen
{"title":"An Ultra-Fast Rolling Double-Helical Robot Driven by Constant Humidity.","authors":"Chuhan Xu, Jiayao Ma, Lei Fu, Xinmeng Liu, Lei Zhang, Yan Chen","doi":"10.1002/advs.202500577","DOIUrl":null,"url":null,"abstract":"<p><p>Untethered soft robots made of stimuli-responsive materials hold great application potential in various fields. However, most robots of this type require artificial modulation of the stimuli to actuate, while it is a great challenge to achieve fast periodic locomotion under a constant external environment. Here, a double-helical robot constructed with humidity-sensitive agarose (AG) films, referred to as the Dualicalbot is proposed, which can rapidly roll under a constant humid environment by making two helices alternately bend by absorbing humidity to actuate the robot in two half-cycles. A theoretical model is built to unveil the periodic deformation of the robot as well as the correlation between the design parameters and the motion speed, based on which the Dualicalbot can reach a maximum rolling speed of 5.8 BL s<sup>-1</sup>. Moreover, it is capable of carrying a payload up to 100% of self-weight and detecting the acid environment it rolls through. This work is envisaged, and more generally the structural design and theoretical modeling principle, will open a new avenue for the development of advanced soft robotics with diverse functionalities.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2500577"},"PeriodicalIF":14.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500577","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Untethered soft robots made of stimuli-responsive materials hold great application potential in various fields. However, most robots of this type require artificial modulation of the stimuli to actuate, while it is a great challenge to achieve fast periodic locomotion under a constant external environment. Here, a double-helical robot constructed with humidity-sensitive agarose (AG) films, referred to as the Dualicalbot is proposed, which can rapidly roll under a constant humid environment by making two helices alternately bend by absorbing humidity to actuate the robot in two half-cycles. A theoretical model is built to unveil the periodic deformation of the robot as well as the correlation between the design parameters and the motion speed, based on which the Dualicalbot can reach a maximum rolling speed of 5.8 BL s-1. Moreover, it is capable of carrying a payload up to 100% of self-weight and detecting the acid environment it rolls through. This work is envisaged, and more generally the structural design and theoretical modeling principle, will open a new avenue for the development of advanced soft robotics with diverse functionalities.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.