Noor Haleem, Jiahui Yuan, Seyit Uguz, Serdar Ucok, ZhengRong Gu, Xufei Yang
{"title":"Direct current (DC) initiated flocculation of Scenedesmus dimorphus","authors":"Noor Haleem, Jiahui Yuan, Seyit Uguz, Serdar Ucok, ZhengRong Gu, Xufei Yang","doi":"10.1007/s11356-025-36298-3","DOIUrl":null,"url":null,"abstract":"<div><p>Despite their superior efficiency, chemical flocculants introduce foreign chemicals, such as metals, into harvested microalgae, posing downstream application challenges. To overcome this, a simple direct current (DC) initiated flocculation technology is proposed for microalgal harvesting. This method applies a DC electric field across titanium plate electrodes to promote microalgal cell aggregation by polarizing their electrical double layer. <i>Scenedesmus dimorphus</i> cultivated in Bold’s Basal Medium was tested under various voltage gradients (58, 116, 174, and 233 V/m) and energizing times (20, 40, and 60 min with DC applied), resulting in up to 94% flocculation efficiency based on dry algal biomass, significantly higher than controls. Microbubbles formed due to water electrolysis, but their impact on algal cell separation was minimal. Unlike electrocoagulation, DC-initiated flocculation uses inert electrodes and, thus, introduces fewer Fe or Al ions. This study is anticipated to facilitate research on electrochemically assisted algae harvesting and processing technologies.</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 17","pages":"11292 - 11298"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11356-025-36298-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-025-36298-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their superior efficiency, chemical flocculants introduce foreign chemicals, such as metals, into harvested microalgae, posing downstream application challenges. To overcome this, a simple direct current (DC) initiated flocculation technology is proposed for microalgal harvesting. This method applies a DC electric field across titanium plate electrodes to promote microalgal cell aggregation by polarizing their electrical double layer. Scenedesmus dimorphus cultivated in Bold’s Basal Medium was tested under various voltage gradients (58, 116, 174, and 233 V/m) and energizing times (20, 40, and 60 min with DC applied), resulting in up to 94% flocculation efficiency based on dry algal biomass, significantly higher than controls. Microbubbles formed due to water electrolysis, but their impact on algal cell separation was minimal. Unlike electrocoagulation, DC-initiated flocculation uses inert electrodes and, thus, introduces fewer Fe or Al ions. This study is anticipated to facilitate research on electrochemically assisted algae harvesting and processing technologies.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.