Yan Xia, Zhaosheng Yu, Jianzhong Lin, Zhaowu Lin, Xiao Hu
{"title":"Dynamics of a spheroidal squirmer interacting with a cylindrical obstacle.","authors":"Yan Xia, Zhaosheng Yu, Jianzhong Lin, Zhaowu Lin, Xiao Hu","doi":"10.1039/d5sm00172b","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms or man-made microswimmers swimming near obstacles have been investigated intensively owing to their importance in biology, physiology, and biomedical engineering. In this work, a direct-forcing fictitious domain method is employed to numerically investigate the interaction between a prolate microorganism (modeled as a squirmer) and a cylindrical obstacle. We report four distinct types of swimming trajectories-forward orbiting, backward orbiting, hovering, and scattering depending on swimmer's aspect ratio. The results illustrate that strong pushers prefer a forward orbit with a low obstacle curvature and a high aspect ratio, while a backward orbit is favored for small aspect ratios. But spheroidal pullers generally scatter off the obstacle. We observe a 'hovering' mode between the backward orbiting and scattering mode for both spherical and spheroidal pushers. Our findings highlight a transition in swimming modes influenced by the geometry and dipolarity of the microswimmer.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sm00172b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms or man-made microswimmers swimming near obstacles have been investigated intensively owing to their importance in biology, physiology, and biomedical engineering. In this work, a direct-forcing fictitious domain method is employed to numerically investigate the interaction between a prolate microorganism (modeled as a squirmer) and a cylindrical obstacle. We report four distinct types of swimming trajectories-forward orbiting, backward orbiting, hovering, and scattering depending on swimmer's aspect ratio. The results illustrate that strong pushers prefer a forward orbit with a low obstacle curvature and a high aspect ratio, while a backward orbit is favored for small aspect ratios. But spheroidal pullers generally scatter off the obstacle. We observe a 'hovering' mode between the backward orbiting and scattering mode for both spherical and spheroidal pushers. Our findings highlight a transition in swimming modes influenced by the geometry and dipolarity of the microswimmer.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.