Fibroblast atlas: Shared and specific cell types across tissues

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kaidong Liu, Yanrui Cui, Huiming Han, Erliang Guo, Xingyang Shi, Kai Xiong, Nan Zhang, Songmei Zhai, Shaocong Sang, Mingyue Liu, Bo Chen, Yunyan Gu
{"title":"Fibroblast atlas: Shared and specific cell types across tissues","authors":"Kaidong Liu,&nbsp;Yanrui Cui,&nbsp;Huiming Han,&nbsp;Erliang Guo,&nbsp;Xingyang Shi,&nbsp;Kai Xiong,&nbsp;Nan Zhang,&nbsp;Songmei Zhai,&nbsp;Shaocong Sang,&nbsp;Mingyue Liu,&nbsp;Bo Chen,&nbsp;Yunyan Gu","doi":"10.1126/sciadv.ado0173","DOIUrl":null,"url":null,"abstract":"<div >Understanding the heterogeneity of fibroblasts depends on decoding the complexity of cell subtypes, their origin, distribution, and interactions with other cells. Here, we integrated 249,156 fibroblasts from 73 studies across 10 tissues to present a single-cell atlas of fibroblasts. We provided a high-resolution classification of 18 fibroblast subtypes. In particular, we revealed a previously undescribed cell population, TSPAN8<sup>+</sup> chromatin remodeling fibroblasts, characterized by high expression of genes with functions related to histone modification and chromatin remodeling. Moreover, TSPAN8<sup>+</sup> chromatin remodeling fibroblasts were detectable in spatial transcriptome data and multiplexed immunofluorescence assays. Compared with other fibroblast subtypes, TSPAN8<sup>+</sup> chromatin remodeling fibroblasts exhibited higher scores in cell differentiation and resident fibroblast, mainly interacting with endothelial cells and T cells through ligand <i>VEGFA</i> and receptor <i>F2R</i>, and their presence was associated with poor prognosis. Our analyses comprehensively defined the shared and specific characteristics of fibroblast subtypes across tissues and provided a user-friendly data portal, Fibroblast Atlas.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado0173","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado0173","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the heterogeneity of fibroblasts depends on decoding the complexity of cell subtypes, their origin, distribution, and interactions with other cells. Here, we integrated 249,156 fibroblasts from 73 studies across 10 tissues to present a single-cell atlas of fibroblasts. We provided a high-resolution classification of 18 fibroblast subtypes. In particular, we revealed a previously undescribed cell population, TSPAN8+ chromatin remodeling fibroblasts, characterized by high expression of genes with functions related to histone modification and chromatin remodeling. Moreover, TSPAN8+ chromatin remodeling fibroblasts were detectable in spatial transcriptome data and multiplexed immunofluorescence assays. Compared with other fibroblast subtypes, TSPAN8+ chromatin remodeling fibroblasts exhibited higher scores in cell differentiation and resident fibroblast, mainly interacting with endothelial cells and T cells through ligand VEGFA and receptor F2R, and their presence was associated with poor prognosis. Our analyses comprehensively defined the shared and specific characteristics of fibroblast subtypes across tissues and provided a user-friendly data portal, Fibroblast Atlas.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信