Sustainable regeneration of 20 aminoacyl-tRNA synthetases in a reconstituted system toward self-synthesizing artificial systems

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Katsumi Hagino, Keiko Masuda, Yoshihiro Shimizu, Norikazu Ichihashi
{"title":"Sustainable regeneration of 20 aminoacyl-tRNA synthetases in a reconstituted system toward self-synthesizing artificial systems","authors":"Katsumi Hagino,&nbsp;Keiko Masuda,&nbsp;Yoshihiro Shimizu,&nbsp;Norikazu Ichihashi","doi":"10.1126/sciadv.adt6269","DOIUrl":null,"url":null,"abstract":"<div >In vitro construction of self-reproducible artificial systems is a major challenge in bottom-up synthetic biology. Here, we developed a reconstituted system capable of sustainably regenerating all 20 aminoacyl-transfer RNA synthetases (AARS), which are major components of the translation system. To achieve this, we needed five types of improvements: (i) optimization of AARS sequences for efficient translation, (ii) optimization of the composition of the translation system to enhance translation, (iii) employment of another bacterial AlaRS and SerRS to improve each aminoacylation activity, (iv) diminishing the translational inhibition caused by certain AARS sequences by codon optimization and EF-P addition, and (v) balancing the DNA concentrations of 20 AARS to match each requirement. After these improvements, we succeeded in the sustainable regeneration of all 20 AARS for up to 20 cycles of 2.5-fold serial dilutions. These methodologies and results provide a substantial advancement toward the realization of self-reproducible artificial systems.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adt6269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adt6269","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro construction of self-reproducible artificial systems is a major challenge in bottom-up synthetic biology. Here, we developed a reconstituted system capable of sustainably regenerating all 20 aminoacyl-transfer RNA synthetases (AARS), which are major components of the translation system. To achieve this, we needed five types of improvements: (i) optimization of AARS sequences for efficient translation, (ii) optimization of the composition of the translation system to enhance translation, (iii) employment of another bacterial AlaRS and SerRS to improve each aminoacylation activity, (iv) diminishing the translational inhibition caused by certain AARS sequences by codon optimization and EF-P addition, and (v) balancing the DNA concentrations of 20 AARS to match each requirement. After these improvements, we succeeded in the sustainable regeneration of all 20 AARS for up to 20 cycles of 2.5-fold serial dilutions. These methodologies and results provide a substantial advancement toward the realization of self-reproducible artificial systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信