Ligand spin immobilization in metal-organic frameworks enables high-performance chemispintronic detection of radical gas molecules

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Cheng Liu, Xiao-Cheng Zhou, Guoao Li, Jian Su, Lingyu Tang, Qinglong Liu, Xiao Han, Sen Lv, Zhangyan Mu, Yamei Sun, Shuai Yuan, Fei Gao, Jing-Lin Zuo, Shuhua Li, Mengning Ding
{"title":"Ligand spin immobilization in metal-organic frameworks enables high-performance chemispintronic detection of radical gas molecules","authors":"Cheng Liu,&nbsp;Xiao-Cheng Zhou,&nbsp;Guoao Li,&nbsp;Jian Su,&nbsp;Lingyu Tang,&nbsp;Qinglong Liu,&nbsp;Xiao Han,&nbsp;Sen Lv,&nbsp;Zhangyan Mu,&nbsp;Yamei Sun,&nbsp;Shuai Yuan,&nbsp;Fei Gao,&nbsp;Jing-Lin Zuo,&nbsp;Shuhua Li,&nbsp;Mengning Ding","doi":"10.1126/sciadv.adq3554","DOIUrl":null,"url":null,"abstract":"<div >The precise quantification of gaseous radicals in exhaled breath, such as fractional exhaled nitric oxide, serves as an invaluable noninvasive clinical diagnosis particularly in discerning various respiratory disorders. To date, the development of high-performance nitric oxide sensors compatible to modern electronic devices remains fundamentally challenging. We report that metal-organic frameworks (MOFs) with ligand spin immobilization demonstrate superior chemispintronic sensitivity and selectivity toward nitric oxide. Tetrathiafulvalene radical cations (TTF·<sup>+</sup>) within the MOF lattice considerably enhance the nitric oxide recognition via spin exchange interactions, leading to a five–order of magnitude reduction in the limit of detection (LOD), as compared to volatile organic compounds (VOCs) via carrier-doping mechanism. Record-low LOD of 0.12 parts per billion was achieved in M-TTF-spin (M = cobalt, zinc, and cadmium) MOFs, which also demonstrates exceptional selectivity over typical nitrogen oxides (NO<i><sub>x</sub></i>) and VOCs. This work opens up a distinct sensing platform for radical-like analytes through strategic design of spin-immobilized molecular functional motifs toward the spintronic device configurations.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq3554","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq3554","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The precise quantification of gaseous radicals in exhaled breath, such as fractional exhaled nitric oxide, serves as an invaluable noninvasive clinical diagnosis particularly in discerning various respiratory disorders. To date, the development of high-performance nitric oxide sensors compatible to modern electronic devices remains fundamentally challenging. We report that metal-organic frameworks (MOFs) with ligand spin immobilization demonstrate superior chemispintronic sensitivity and selectivity toward nitric oxide. Tetrathiafulvalene radical cations (TTF·+) within the MOF lattice considerably enhance the nitric oxide recognition via spin exchange interactions, leading to a five–order of magnitude reduction in the limit of detection (LOD), as compared to volatile organic compounds (VOCs) via carrier-doping mechanism. Record-low LOD of 0.12 parts per billion was achieved in M-TTF-spin (M = cobalt, zinc, and cadmium) MOFs, which also demonstrates exceptional selectivity over typical nitrogen oxides (NOx) and VOCs. This work opens up a distinct sensing platform for radical-like analytes through strategic design of spin-immobilized molecular functional motifs toward the spintronic device configurations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信