A Spatially Resolved Evaluation of Accelerated Environmental Aging on Emerging Polypropylene-Based Photovoltaic Backsheets Using Raman Spectroscopy

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ashlee Aiello, Stefan Mitterhofer, Jan Obrzut, Karissa L. Jensen, Patryk Wąsik, Chiara Barretta, Gernot Oreski, Stephanie S. Watson, Lipiin Sung, Xiaohong Gu
{"title":"A Spatially Resolved Evaluation of Accelerated Environmental Aging on Emerging Polypropylene-Based Photovoltaic Backsheets Using Raman Spectroscopy","authors":"Ashlee Aiello,&nbsp;Stefan Mitterhofer,&nbsp;Jan Obrzut,&nbsp;Karissa L. Jensen,&nbsp;Patryk Wąsik,&nbsp;Chiara Barretta,&nbsp;Gernot Oreski,&nbsp;Stephanie S. Watson,&nbsp;Lipiin Sung,&nbsp;Xiaohong Gu","doi":"10.1002/pip.3904","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accelerated aging was used to assess environmental degradation in emerging co-extruded polypropylene (PP)-based backsheets under three different environmental conditions (65°C/20% relative humidity (RH), 75°C/20% RH, and 75°C/50% RH). Although differential scanning calorimetry did not measure crystallinity changes with exposure, spatially resolved Raman spectroscopy identified crystallinity increases in the core layer of aged samples, indicating a heterogeneous postcrystallization process. The Raman results were in agreement with synchrotron-based microfocused wide-angle X-ray scattering measurements. Cross-sectional nanoindentation was used to correlate localized crystallinity shifts with changes in Young's modulus. A similar trend was found where increased modulus was measured in the core layer, supporting the relationship between modulus and crystallinity. Finally, dielectric characterization was used to assess the impact of these material property changes on performance. While changes in the backsheet material properties and dielectric performance were observed with accelerated aging, these shifts generally equilibrated with time, indicating overall stability in response to environmental stressors. Additionally, the identified heterogeneous material property changes indicate that spatially resolved crystallinity measurements may be a valuable early failure indicator to be used in the assessment of PV backsheet long-term durability.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 5","pages":"652-662"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3904","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated aging was used to assess environmental degradation in emerging co-extruded polypropylene (PP)-based backsheets under three different environmental conditions (65°C/20% relative humidity (RH), 75°C/20% RH, and 75°C/50% RH). Although differential scanning calorimetry did not measure crystallinity changes with exposure, spatially resolved Raman spectroscopy identified crystallinity increases in the core layer of aged samples, indicating a heterogeneous postcrystallization process. The Raman results were in agreement with synchrotron-based microfocused wide-angle X-ray scattering measurements. Cross-sectional nanoindentation was used to correlate localized crystallinity shifts with changes in Young's modulus. A similar trend was found where increased modulus was measured in the core layer, supporting the relationship between modulus and crystallinity. Finally, dielectric characterization was used to assess the impact of these material property changes on performance. While changes in the backsheet material properties and dielectric performance were observed with accelerated aging, these shifts generally equilibrated with time, indicating overall stability in response to environmental stressors. Additionally, the identified heterogeneous material property changes indicate that spatially resolved crystallinity measurements may be a valuable early failure indicator to be used in the assessment of PV backsheet long-term durability.

Abstract Image

利用拉曼光谱对新兴聚丙烯基光伏背板的加速环境老化进行空间分辨评估
采用加速老化的方法,在三种不同的环境条件(65°C/20%相对湿度(RH)、75°C/20% RH和75°C/50% RH)下,评估了新兴共挤聚丙烯(PP)基背板的环境退化情况。虽然差示扫描量热法没有测量结晶度随曝光的变化,但空间分辨拉曼光谱发现,老化样品的核心层结晶度增加,表明非均匀的后结晶过程。拉曼结果与基于同步加速器的微聚焦广角x射线散射测量结果一致。横截面纳米压痕用于将局部结晶度的变化与杨氏模量的变化联系起来。在核心层中测量到的模量增加也有类似的趋势,这支持了模量和结晶度之间的关系。最后,利用介电特性来评估这些材料性质变化对性能的影响。随着老化的加速,背板材料性能和介电性能会发生变化,但这些变化通常随着时间的推移而平衡,表明对环境压力的响应总体上是稳定的。此外,确定的非均质材料性质变化表明,空间分辨的结晶度测量可能是一个有价值的早期失效指标,可用于评估PV背板的长期耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信