{"title":"Enhancing Vertical Orientation via Self-Assembled Molecule Interlayer Enables Efficient Ruddlesden–Popper Perovskite Solar Cells","authors":"Aili Wang, Shuxian Chen, Kaihuai Du, Zhimin Fang, Luozheng Zhang, Lvzhou Li, Xu Dong, Ningyi Yuan, Jianning Ding","doi":"10.1002/solr.202400906","DOIUrl":null,"url":null,"abstract":"<p>The typical anisotropic crystal orientation in Ruddlesden–Popper perovskites (RPPs) is not conducive to carrier transport, resulting in a reduced power conversion efficiency (PCE) compared to three-dimensional perovskites. Here, we present a novel method for manipulating the crystal orientation by introducing a self-assembled molecular layer, MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid), as an interlayer between PTAA (poly[bis(4-phenyl)(2,4, 6-trimethylphenyl) amine]) and the perovskite. The phosphate group of MeO-2PACz bonds with Pb<sup>2+</sup> in the RPP, promoting the vertical orientation formation of the perovskite and facilitating efficient charge transport within the RPP materials. Additionally, the grain size is increased, and grain boundary defects are passivated, which contributes to suppressed nonradiative recombination of carriers. The interlayer incorporation of significantly improves the PCE of the optimized device to 17.80%, compared to the device without MeO-2PACz, which has an efficiency of approximately 15.68%. This presents the highest efficiency for an MA-based RP perovskite solar cell (PSC) utilizing 4FPEA (4-fluoro-phenethylammonium) as the spacer cation. Furthermore, the unencapsulated devices demonstrate superior thermal stability. This proposed optimization offers new insights into the manipulation of RPP crystal growth orientation.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 7","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400906","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The typical anisotropic crystal orientation in Ruddlesden–Popper perovskites (RPPs) is not conducive to carrier transport, resulting in a reduced power conversion efficiency (PCE) compared to three-dimensional perovskites. Here, we present a novel method for manipulating the crystal orientation by introducing a self-assembled molecular layer, MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl] phosphonic acid), as an interlayer between PTAA (poly[bis(4-phenyl)(2,4, 6-trimethylphenyl) amine]) and the perovskite. The phosphate group of MeO-2PACz bonds with Pb2+ in the RPP, promoting the vertical orientation formation of the perovskite and facilitating efficient charge transport within the RPP materials. Additionally, the grain size is increased, and grain boundary defects are passivated, which contributes to suppressed nonradiative recombination of carriers. The interlayer incorporation of significantly improves the PCE of the optimized device to 17.80%, compared to the device without MeO-2PACz, which has an efficiency of approximately 15.68%. This presents the highest efficiency for an MA-based RP perovskite solar cell (PSC) utilizing 4FPEA (4-fluoro-phenethylammonium) as the spacer cation. Furthermore, the unencapsulated devices demonstrate superior thermal stability. This proposed optimization offers new insights into the manipulation of RPP crystal growth orientation.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.