Habitat specialization and edge effects of soil microbial communities in a fragmented landscape

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY
Ecology Pub Date : 2025-04-02 DOI:10.1002/ecy.70072
Claire C. Winfrey, Julian Resasco, Noah Fierer
{"title":"Habitat specialization and edge effects of soil microbial communities in a fragmented landscape","authors":"Claire C. Winfrey,&nbsp;Julian Resasco,&nbsp;Noah Fierer","doi":"10.1002/ecy.70072","DOIUrl":null,"url":null,"abstract":"<p>Soil microorganisms play outsized roles in nutrient cycling, plant health, and climate regulation. Despite their importance, we have a limited understanding of how soil microbes are affected by habitat fragmentation, including their responses to conditions at fragment edges, or “edge effects.” To understand the responses of soil communities to edge effects, we analyzed the distributions of soil bacteria, archaea, and fungi in an experimentally fragmented system of open patches embedded within a forest matrix. In addition, we identified taxa that consistently differed among patch, edge, or matrix habitats (“specialists”) and taxa that showed no habitat preference (“nonspecialists”). We hypothesized that microbial community turnover would be most pronounced at the edge between habitats. We also hypothesized that specialist fungi would be more likely to be mycorrhizal than nonspecialist fungi because mycorrhizae should be affected more by different plant hosts among habitats, whereas specialist prokaryotes would have smaller genomes (indicating reduced metabolic versatility) and be less likely to be able to sporulate than nonspecialist prokaryotes. Across all replicate sites, the matrix and patch soils harbored distinct microbial communities. However, sites where the contrasts in vegetation and pH between the patch and matrix were most pronounced exhibited larger differences between patch and matrix communities and tended to have edge communities that differed from those in the patch and forest. There were similar numbers of patch and matrix specialists, but very few edge specialist taxa. Acidobacteria and ectomycorrhizae were more likely to be forest specialists, while Chloroflexi, Ascomycota, and Glomeromycota (i.e., arbuscular mycorrhizae) were more likely to be patch specialists. Contrary to our hypotheses, nonspecialist bacteria were not more likely than specialist bacteria to have larger genomes or to be spore-formers. We found partial support for our mycorrhizal hypothesis: arbuscular mycorrhizae, but not ectomycorrhizae, were more likely to be specialists. Overall, our results indicate that soil microbial communities are sensitive to edges, but not all taxa are equally affected, with arbuscular mycorrhizae in particular showing a strong response to habitat edges. In the context of increasing habitat fragmentation worldwide, our results can help inform efforts to maintain the structure and functioning of the soil microbiome.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.70072","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microorganisms play outsized roles in nutrient cycling, plant health, and climate regulation. Despite their importance, we have a limited understanding of how soil microbes are affected by habitat fragmentation, including their responses to conditions at fragment edges, or “edge effects.” To understand the responses of soil communities to edge effects, we analyzed the distributions of soil bacteria, archaea, and fungi in an experimentally fragmented system of open patches embedded within a forest matrix. In addition, we identified taxa that consistently differed among patch, edge, or matrix habitats (“specialists”) and taxa that showed no habitat preference (“nonspecialists”). We hypothesized that microbial community turnover would be most pronounced at the edge between habitats. We also hypothesized that specialist fungi would be more likely to be mycorrhizal than nonspecialist fungi because mycorrhizae should be affected more by different plant hosts among habitats, whereas specialist prokaryotes would have smaller genomes (indicating reduced metabolic versatility) and be less likely to be able to sporulate than nonspecialist prokaryotes. Across all replicate sites, the matrix and patch soils harbored distinct microbial communities. However, sites where the contrasts in vegetation and pH between the patch and matrix were most pronounced exhibited larger differences between patch and matrix communities and tended to have edge communities that differed from those in the patch and forest. There were similar numbers of patch and matrix specialists, but very few edge specialist taxa. Acidobacteria and ectomycorrhizae were more likely to be forest specialists, while Chloroflexi, Ascomycota, and Glomeromycota (i.e., arbuscular mycorrhizae) were more likely to be patch specialists. Contrary to our hypotheses, nonspecialist bacteria were not more likely than specialist bacteria to have larger genomes or to be spore-formers. We found partial support for our mycorrhizal hypothesis: arbuscular mycorrhizae, but not ectomycorrhizae, were more likely to be specialists. Overall, our results indicate that soil microbial communities are sensitive to edges, but not all taxa are equally affected, with arbuscular mycorrhizae in particular showing a strong response to habitat edges. In the context of increasing habitat fragmentation worldwide, our results can help inform efforts to maintain the structure and functioning of the soil microbiome.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信