Sévrine F. Sailley, Ignacio A. Catalan, Jurgen Batsleer, Sieme Bossier, Dimitrios Damalas, Cecilie Hansen, Martin Huret, Georg Engelhard, Katell Hammon, Susan Kay, Francesc Maynou, J. Rasmus Nielsen, Andrés Ospina-Álvarez, John Pinnegar, Jan Jaap Poos, Vasiliki Sgardeli, Myron A. Peck
{"title":"Multiple Models of European Marine Fish Stocks: Regional Winners and Losers in a Future Climate","authors":"Sévrine F. Sailley, Ignacio A. Catalan, Jurgen Batsleer, Sieme Bossier, Dimitrios Damalas, Cecilie Hansen, Martin Huret, Georg Engelhard, Katell Hammon, Susan Kay, Francesc Maynou, J. Rasmus Nielsen, Andrés Ospina-Álvarez, John Pinnegar, Jan Jaap Poos, Vasiliki Sgardeli, Myron A. Peck","doi":"10.1111/gcb.70149","DOIUrl":null,"url":null,"abstract":"<p>Climate change continues to alter the productivity of commercially and culturally important fisheries with major consequences for food security and coastal economies. We provide the first, multi-model projections of changes in the distribution and productivity of 18 key fish stocks across seven European regional seas spanning the Mediterranean to the Arctic, using 11 state-of-the-art bio-ecological models. Our projections indicate species- and region-specific changes in abundance and distributions of these stocks by the mid- to late 21st century. The varied responses are caused by differences in species' physiology, regional food web dynamics, and physical habitat characteristics. Important drivers include not only warming of Europe's seas (from 1°C to 3°C in RCP 4.5, and 2°C to 4°C in RCP 8.5 by 2100) and changes in primary productivity but also oxygen-limited fish growth, changes in pH, and benthic dissolved organic carbon. Warming and altered levels of secondary production are projected to lead to declines in some stocks (Norwegian and Barents Sea herring) and increases in others (Bay of Biscay anchovy). While some temperate and cold-water stocks are projected to decline markedly in some regions (e.g., North Sea, Western Mediterranean), the immigration of species from the south and/or increase in productivity of warm-water species may offer new opportunities for fisheries. Species-level changes will likely have ecosystem-level consequences that have yet to be fully assessed, and responses in some sub-areas may be more pronounced due to local processes not captured in projections. Projections are consistent despite differences in model structures, and the results of our multi-model analysis align with other modelling exercises while delving into details often overlooked at the species or spatial level. This represents a novel approach to projecting the impacts of climate change on fisheries, which should be considered in future efforts to support climate-ready management strategies for marine fish stocks.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 4","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70149","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70149","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change continues to alter the productivity of commercially and culturally important fisheries with major consequences for food security and coastal economies. We provide the first, multi-model projections of changes in the distribution and productivity of 18 key fish stocks across seven European regional seas spanning the Mediterranean to the Arctic, using 11 state-of-the-art bio-ecological models. Our projections indicate species- and region-specific changes in abundance and distributions of these stocks by the mid- to late 21st century. The varied responses are caused by differences in species' physiology, regional food web dynamics, and physical habitat characteristics. Important drivers include not only warming of Europe's seas (from 1°C to 3°C in RCP 4.5, and 2°C to 4°C in RCP 8.5 by 2100) and changes in primary productivity but also oxygen-limited fish growth, changes in pH, and benthic dissolved organic carbon. Warming and altered levels of secondary production are projected to lead to declines in some stocks (Norwegian and Barents Sea herring) and increases in others (Bay of Biscay anchovy). While some temperate and cold-water stocks are projected to decline markedly in some regions (e.g., North Sea, Western Mediterranean), the immigration of species from the south and/or increase in productivity of warm-water species may offer new opportunities for fisheries. Species-level changes will likely have ecosystem-level consequences that have yet to be fully assessed, and responses in some sub-areas may be more pronounced due to local processes not captured in projections. Projections are consistent despite differences in model structures, and the results of our multi-model analysis align with other modelling exercises while delving into details often overlooked at the species or spatial level. This represents a novel approach to projecting the impacts of climate change on fisheries, which should be considered in future efforts to support climate-ready management strategies for marine fish stocks.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.