Palmyra Palm Shell (Borassus flabellifer) Properties Part 3: Insights Into Its Morphological, Chemical, and Thermal Properties After Alkali Treatment

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Md Atiqur Rahman, Mamadou Ndiaye, Bartosz Weclawski, Peter Farrell
{"title":"Palmyra Palm Shell (Borassus flabellifer) Properties Part 3: Insights Into Its Morphological, Chemical, and Thermal Properties After Alkali Treatment","authors":"Md Atiqur Rahman,&nbsp;Mamadou Ndiaye,&nbsp;Bartosz Weclawski,&nbsp;Peter Farrell","doi":"10.1002/eng2.70103","DOIUrl":null,"url":null,"abstract":"<p>The demand for materials that combine high thermal stability and environmental sustainability is growing in modern engineering. While synthetic fibers are effective, their environmental impact often undermines sustainability goals. This study explores the potential of <i>Borassus flabellifer</i> fruit husk, typically discarded as agricultural waste in Bangladesh, as a bio-fiber alternative for thermal insulation applications. The research investigates the morphological, chemical, and thermal properties of the husk after alkali treatment with sodium hydroxide (NaOH) for varying durations. The results show that alkali treatment significantly enhances the thermal properties of Borassus husk. Notably, char content increased by up to 32%, surpassing other biofibers such as hemp, sisal, jute, and kenaf. The integral process decomposition temperature (IPDT) was found to be up to 30% higher than the untreated husk fiber, indicating improved thermal stability. Additionally, specific heat capacity (Cp) decreased by approximately 37%, correlating with an increase in integral process decomposition heat (IPDH). Scanning electron microscopy (SEM) analysis revealed that treated husks had a rougher and cleaner surface, which may improve thermal insulation properties by creating more voids and enhancing adhesion in composite materials. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed reduced and shifted hemicellulose peaks, consistent with lower moisture absorption, as confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Optimal results were observed in samples treated for 0.25 and 0.75 h, suggesting that alkali-treated Borassus husk could serve as an alternative eco-friendly material for energy-efficient and sustainable engineering applications.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for materials that combine high thermal stability and environmental sustainability is growing in modern engineering. While synthetic fibers are effective, their environmental impact often undermines sustainability goals. This study explores the potential of Borassus flabellifer fruit husk, typically discarded as agricultural waste in Bangladesh, as a bio-fiber alternative for thermal insulation applications. The research investigates the morphological, chemical, and thermal properties of the husk after alkali treatment with sodium hydroxide (NaOH) for varying durations. The results show that alkali treatment significantly enhances the thermal properties of Borassus husk. Notably, char content increased by up to 32%, surpassing other biofibers such as hemp, sisal, jute, and kenaf. The integral process decomposition temperature (IPDT) was found to be up to 30% higher than the untreated husk fiber, indicating improved thermal stability. Additionally, specific heat capacity (Cp) decreased by approximately 37%, correlating with an increase in integral process decomposition heat (IPDH). Scanning electron microscopy (SEM) analysis revealed that treated husks had a rougher and cleaner surface, which may improve thermal insulation properties by creating more voids and enhancing adhesion in composite materials. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed reduced and shifted hemicellulose peaks, consistent with lower moisture absorption, as confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Optimal results were observed in samples treated for 0.25 and 0.75 h, suggesting that alkali-treated Borassus husk could serve as an alternative eco-friendly material for energy-efficient and sustainable engineering applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信