Yeonsoo Lim, Gyunam Park, Hojin An, Jonghwa Han, Joonhyun Bae, Ji-Hyun Kim, Yan Lee, Kyungtae Kang, Jaeyoung Sung, Sunbum Kwon
{"title":"Metabolism-inspired chemical reaction networks for chemically driven dissipative oligoesterification","authors":"Yeonsoo Lim, Gyunam Park, Hojin An, Jonghwa Han, Joonhyun Bae, Ji-Hyun Kim, Yan Lee, Kyungtae Kang, Jaeyoung Sung, Sunbum Kwon","doi":"10.1002/ange.202425407","DOIUrl":null,"url":null,"abstract":"<p>Metabolism is a complex network of chemical reactions in which transient biomolecules are continuously produced and degraded. Mimicking this dynamic process in synthetic systems poses a considerable challenge, as it requires designs that enable the exchange of energy and matter among transient molecules. In this study, we explored a chemically driven oligoesterification process operating within a highly intricate reaction network and constructed a dynamic library of transient oligoesters. Our kinetic analysis uncovered an intriguing phenomenon: oligoesters undergo parasitic exchanges, consuming one another to sustain the system's dynamics before reaching thermodynamic equilibrium. This discovery opens new opportunities for designing synthetic systems that replicate the complexity and self-sustaining behavior of metabolic processes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202425407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202425407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolism is a complex network of chemical reactions in which transient biomolecules are continuously produced and degraded. Mimicking this dynamic process in synthetic systems poses a considerable challenge, as it requires designs that enable the exchange of energy and matter among transient molecules. In this study, we explored a chemically driven oligoesterification process operating within a highly intricate reaction network and constructed a dynamic library of transient oligoesters. Our kinetic analysis uncovered an intriguing phenomenon: oligoesters undergo parasitic exchanges, consuming one another to sustain the system's dynamics before reaching thermodynamic equilibrium. This discovery opens new opportunities for designing synthetic systems that replicate the complexity and self-sustaining behavior of metabolic processes.