Electrocatalytic Acetylene Semi-Hydrogenation to Ethylene with High Energy Efficiency

Cong Dou, Yanmei Huang, Bohang Zhao, Weiwei Lei, Prof. Bin Zhang, Prof. Yifu Yu
{"title":"Electrocatalytic Acetylene Semi-Hydrogenation to Ethylene with High Energy Efficiency","authors":"Cong Dou,&nbsp;Yanmei Huang,&nbsp;Bohang Zhao,&nbsp;Weiwei Lei,&nbsp;Prof. Bin Zhang,&nbsp;Prof. Yifu Yu","doi":"10.1002/ange.202423381","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic acetylene semi-hydrogenation (EASH) provides a petroleum-independent strategy for ethylene production. However, the challenges of high overpotentials and strong hydrogen evolution competition reaction over conventional electrocatalysts at industrial current densities result in substantial energy consumption, limiting the practical application of EASH technology. Herein, zinc-doped copper catalysts are designed and prepared via a facile impregnation and electroreduction relay method. The as-prepared Cu-2.7Zn catalyst exhibits an ethylene partial current density of −0.29 A cm<sup>−2</sup> with a Faradaic efficiency of 96 % and a reaction potential of −0.62 V versus reversible hydrogen electrode (RHE), surpassing the previously reported electrocatalysts. The combined results of experimental tests and theoretical calculations demonstrate zinc doping significantly enhances acetylene adsorption and accelerates reaction kinetics, leading to a notable decrease in overpotential. Furthermore, the increased *H-*H binding energy barrier and the improved ethylene desorption on Cu-2.7Zn effectively suppress hydrogen evolution and acetylene over-hydrogenation, contributing to the enhancement of ethylene Faradaic efficiency.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202423381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic acetylene semi-hydrogenation (EASH) provides a petroleum-independent strategy for ethylene production. However, the challenges of high overpotentials and strong hydrogen evolution competition reaction over conventional electrocatalysts at industrial current densities result in substantial energy consumption, limiting the practical application of EASH technology. Herein, zinc-doped copper catalysts are designed and prepared via a facile impregnation and electroreduction relay method. The as-prepared Cu-2.7Zn catalyst exhibits an ethylene partial current density of −0.29 A cm−2 with a Faradaic efficiency of 96 % and a reaction potential of −0.62 V versus reversible hydrogen electrode (RHE), surpassing the previously reported electrocatalysts. The combined results of experimental tests and theoretical calculations demonstrate zinc doping significantly enhances acetylene adsorption and accelerates reaction kinetics, leading to a notable decrease in overpotential. Furthermore, the increased *H-*H binding energy barrier and the improved ethylene desorption on Cu-2.7Zn effectively suppress hydrogen evolution and acetylene over-hydrogenation, contributing to the enhancement of ethylene Faradaic efficiency.

电催化乙炔半加氢(EASH)为乙烯生产提供了一种不依赖石油的策略。然而,在工业电流密度下,传统电催化剂面临高过电位和强氢进化竞争反应的挑战,导致大量能源消耗,限制了 EASH 技术的实际应用。本文设计并通过简便的浸渍和电还原接力法制备了掺锌铜催化剂。制备的 Cu-2.7Zn 催化剂的乙烯部分电流密度为 -0.29 A cm-2,法拉第效率为 96%,与可逆氢电极(RHE)的反应电位为 -0.62 V,超过了之前报道的电催化剂。实验测试和理论计算的综合结果表明,锌掺杂能显著增强对乙炔的吸附并加速反应动力学,从而显著降低过电位。此外,Cu-2.7Zn 上 *H-*H 结合能势垒的增加和乙烯解吸的改善有效地抑制了氢的演化和乙炔的过氢化,从而提高了乙烯的法拉第效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信