Development of a Predictive Model for Classifying Immune Checkpoint Inhibitor-Induced Liver Injury Types

IF 1.7 Q3 GASTROENTEROLOGY & HEPATOLOGY
JGH Open Pub Date : 2025-04-03 DOI:10.1002/jgh3.70147
Jun Kitadai, Toshifumi Tada, Takanori Matsuura, Mayumi Ehara, Tatsuya Sakane, Miki Kawano, Yuta Inoue, Shoji Tamura, Aya Horai, Yuuki Shiomi, Yoshihiko Yano, Yuzo Kodama
{"title":"Development of a Predictive Model for Classifying Immune Checkpoint Inhibitor-Induced Liver Injury Types","authors":"Jun Kitadai,&nbsp;Toshifumi Tada,&nbsp;Takanori Matsuura,&nbsp;Mayumi Ehara,&nbsp;Tatsuya Sakane,&nbsp;Miki Kawano,&nbsp;Yuta Inoue,&nbsp;Shoji Tamura,&nbsp;Aya Horai,&nbsp;Yuuki Shiomi,&nbsp;Yoshihiko Yano,&nbsp;Yuzo Kodama","doi":"10.1002/jgh3.70147","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aims</h3>\n \n <p>Immune checkpoint inhibitors (ICIs) have transformed cancer therapy; however, they are associated with ICI-induced liver injury (ICI-LI), which manifests as hepatocellular, mixed, or cholestatic patterns with variable treatment responses. This study aimed to develop and validate a predictive model to identify ICI-LI type using clinical data available at ICI initiation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A retrospective analysis of 297 patients with ICI-LI was conducted. Baseline clinical data were analyzed using univariate and multivariate logistic regression to predict ICI-LI types in the training and validation cohorts. A predictive model was developed and validated using receiver operating characteristic (ROC) curve analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Multivariate analysis in the training cohort identified male sex (odds ratio [OR]: 3.33, 95% confidence interval [CI]: 1.57–7.06, <i>p</i> = 0.002), serum albumin levels (OR: 0.42, 95% CI: 0.19–0.91, <i>p</i> = 0.027), and serum alanine aminotransferase (ALT) levels (OR: 0.97, 95% CI: 0.94–0.99, <i>p</i> = 0.015) as significant predictors, along with ICI regimen types selected using the Akaike information criterion. The logistic regression model, expressed as <i>p</i> = 1/{1 + (−(5.02 + 1.20 × (sex [F:0, M:1])) − 0.87 × albumin [g/dL] − 0.03 × ALT [U/L] − 0.9 × (drug [non-anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) related regimen:0, anti-CTLA-4 related regimen:1]))}, achieved an area under the ROC (AUROC) of 0.73 (95% CI: 0.63–0.82) in the training cohort. At a cut-off of 0.86, the sensitivity was 60.3%, specificity 74.4%, positive predictive value 92.3%, and negative predictive value 26.9%. In the validation cohort, the AUROC was 0.752 (95% CI: 0.476–1.00).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This predictive model demonstrates its utility in classifying ICI-LI types.</p>\n </section>\n </div>","PeriodicalId":45861,"journal":{"name":"JGH Open","volume":"9 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgh3.70147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JGH Open","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgh3.70147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Immune checkpoint inhibitors (ICIs) have transformed cancer therapy; however, they are associated with ICI-induced liver injury (ICI-LI), which manifests as hepatocellular, mixed, or cholestatic patterns with variable treatment responses. This study aimed to develop and validate a predictive model to identify ICI-LI type using clinical data available at ICI initiation.

Methods

A retrospective analysis of 297 patients with ICI-LI was conducted. Baseline clinical data were analyzed using univariate and multivariate logistic regression to predict ICI-LI types in the training and validation cohorts. A predictive model was developed and validated using receiver operating characteristic (ROC) curve analysis.

Results

Multivariate analysis in the training cohort identified male sex (odds ratio [OR]: 3.33, 95% confidence interval [CI]: 1.57–7.06, p = 0.002), serum albumin levels (OR: 0.42, 95% CI: 0.19–0.91, p = 0.027), and serum alanine aminotransferase (ALT) levels (OR: 0.97, 95% CI: 0.94–0.99, p = 0.015) as significant predictors, along with ICI regimen types selected using the Akaike information criterion. The logistic regression model, expressed as p = 1/{1 + (−(5.02 + 1.20 × (sex [F:0, M:1])) − 0.87 × albumin [g/dL] − 0.03 × ALT [U/L] − 0.9 × (drug [non-anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) related regimen:0, anti-CTLA-4 related regimen:1]))}, achieved an area under the ROC (AUROC) of 0.73 (95% CI: 0.63–0.82) in the training cohort. At a cut-off of 0.86, the sensitivity was 60.3%, specificity 74.4%, positive predictive value 92.3%, and negative predictive value 26.9%. In the validation cohort, the AUROC was 0.752 (95% CI: 0.476–1.00).

Conclusion

This predictive model demonstrates its utility in classifying ICI-LI types.

Abstract Image

免疫检查点抑制剂诱导肝损伤类型分类预测模型的建立
免疫检查点抑制剂(ICIs)已经改变了癌症治疗;然而,它们与ici诱导的肝损伤(ICI-LI)有关,表现为肝细胞性、混合性或胆汁淤积型,治疗反应各不相同。本研究旨在开发并验证一种预测模型,利用ICI起始时可用的临床数据来识别ICI- li类型。方法对297例ci - li患者进行回顾性分析。基线临床数据分析采用单变量和多变量逻辑回归预测训练和验证队列的ci - li类型。采用受试者工作特征(ROC)曲线分析建立预测模型并进行验证。结果多因素分析发现,男性(优势比[OR]: 3.33, 95%可信区间[CI]: 1.57-7.06, p = 0.002)、血清白蛋白水平(OR: 0.42, 95% CI: 0.19-0.91, p = 0.027)、血清丙氨酸转氨酶(ALT)水平(OR: 0.97, 95% CI: 0.94-0.99, p = 0.015)以及使用赤池信息标准选择的ICI方案类型均为显著预测因素。logistic回归模型表示为p = 1/{1 +(−(5.02 + 1.20 ×(性别[F:0, M:1]))−0.87 ×白蛋白[g/dL]−0.03 × ALT [U/L]−0.9 ×(药物[非抗细胞毒性T淋巴细胞抗原4 (CTLA-4)相关方案:0,抗CTLA-4相关方案:1]))},训练队列的ROC下面积(AUROC)为0.73 (95% CI: 0.63-0.82)。截止值为0.86时,敏感性为60.3%,特异性为74.4%,阳性预测值为92.3%,阴性预测值为26.9%。在验证队列中,AUROC为0.752 (95% CI: 0.476-1.00)。结论该预测模型在ci - li类型分类中具有较好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JGH Open
JGH Open GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
143
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信