Nitrate-Driven Eutrophication Supports High Nitrous Oxide Production and Emission in Coastal Lagoons

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Henry L. S. Cheung, Mindaugas Zilius, Tobia Politi, Elise Lorre, Irma Vybernaite-Lubiene, Isaac R. Santos, Stefano Bonaglia
{"title":"Nitrate-Driven Eutrophication Supports High Nitrous Oxide Production and Emission in Coastal Lagoons","authors":"Henry L. S. Cheung,&nbsp;Mindaugas Zilius,&nbsp;Tobia Politi,&nbsp;Elise Lorre,&nbsp;Irma Vybernaite-Lubiene,&nbsp;Isaac R. Santos,&nbsp;Stefano Bonaglia","doi":"10.1029/2024JG008510","DOIUrl":null,"url":null,"abstract":"<p>Under current circumstances, coastal lagoons are net emitters of nitrous oxide (N<sub>2</sub>O) to the atmosphere. We hypothesize that widespread nitrogen-driven coastal eutrophication will enhance N<sub>2</sub>O production and emissions from coastal lagoons. Here, we quantified spatial and temporal patterns of sediment-water and water-air N<sub>2</sub>O fluxes in three large eutrophic lagoons in Europe. Annual sediment N<sub>2</sub>O fluxes ranged between −0.3 ± 0.3 (summer) and 10.6 ± 2.0 μmol m<sup>−2</sup> d<sup>−1</sup> (spring). In spring, conspicuous sediment effluxes were mainly supported by high nitrate concentrations (89–202 μM) and incomplete denitrification. In summer, a small sediment influx was related to nitrate limitation (0–9 μM), potentially leading to N<sub>2</sub>O demand for denitrification. The water-air N<sub>2</sub>O fluxes were comparable with benthic fluxes, indicating that sediment was the main source of N<sub>2</sub>O to the atmosphere. The hypereutrophic Curonian Lagoon had the largest N<sub>2</sub>O emission at 4.9 ± 2.1 μmol m<sup>−2</sup> d<sup>−1</sup>, while the less eutrophic Oder and Vistula lagoons emitted 2.5 ± 1.0 and 2.0 ± 0.7 μmol m<sup>−2</sup> d<sup>−1</sup>, respectively. Our observations, combined with earlier measurements in coastal lagoons worldwide, revealed a lagoon median (Q1–Q3) N<sub>2</sub>O emission of 14.2 (2.7–29.8) Gg yr<sup>−1</sup>, which is about 48% higher than previous estimates. Eutrophication driven by large nitrogen inputs is thus a significant driver of coastal N<sub>2</sub>O emissions globally.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008510","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008510","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under current circumstances, coastal lagoons are net emitters of nitrous oxide (N2O) to the atmosphere. We hypothesize that widespread nitrogen-driven coastal eutrophication will enhance N2O production and emissions from coastal lagoons. Here, we quantified spatial and temporal patterns of sediment-water and water-air N2O fluxes in three large eutrophic lagoons in Europe. Annual sediment N2O fluxes ranged between −0.3 ± 0.3 (summer) and 10.6 ± 2.0 μmol m−2 d−1 (spring). In spring, conspicuous sediment effluxes were mainly supported by high nitrate concentrations (89–202 μM) and incomplete denitrification. In summer, a small sediment influx was related to nitrate limitation (0–9 μM), potentially leading to N2O demand for denitrification. The water-air N2O fluxes were comparable with benthic fluxes, indicating that sediment was the main source of N2O to the atmosphere. The hypereutrophic Curonian Lagoon had the largest N2O emission at 4.9 ± 2.1 μmol m−2 d−1, while the less eutrophic Oder and Vistula lagoons emitted 2.5 ± 1.0 and 2.0 ± 0.7 μmol m−2 d−1, respectively. Our observations, combined with earlier measurements in coastal lagoons worldwide, revealed a lagoon median (Q1–Q3) N2O emission of 14.2 (2.7–29.8) Gg yr−1, which is about 48% higher than previous estimates. Eutrophication driven by large nitrogen inputs is thus a significant driver of coastal N2O emissions globally.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信