{"title":"Electromagnetic helicity flux operators in higher dimensions","authors":"Wen-Bin Liu, Jiang Long, Xin-Hao Zhou","doi":"10.1007/JHEP04(2025)026","DOIUrl":null,"url":null,"abstract":"<p>The helicity flux operator is a fascinating quantity that characterizes the angular distribution of the helicity of radiative photons or gravitons and it has many interesting physical consequences. In this paper, we construct the electromagnetic helicity flux operators which form a non-Abelian group in general dimensions, among which the minimal helicity flux operators form the massless representation of the little group, a finite spin unitary irreducible representation of the Poincaré group. As in four dimensions, they generate an extended angle-dependent transformation on the Carrollian manifold. Interestingly, there is no known corresponding bulk duality transformation in general dimensions. However, we can construct a topological Chern-Simons term that evaluates the minimal helicity flux operators at <span>\\( {\\mathcal{I}}^{+} \\)</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)026.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)026","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The helicity flux operator is a fascinating quantity that characterizes the angular distribution of the helicity of radiative photons or gravitons and it has many interesting physical consequences. In this paper, we construct the electromagnetic helicity flux operators which form a non-Abelian group in general dimensions, among which the minimal helicity flux operators form the massless representation of the little group, a finite spin unitary irreducible representation of the Poincaré group. As in four dimensions, they generate an extended angle-dependent transformation on the Carrollian manifold. Interestingly, there is no known corresponding bulk duality transformation in general dimensions. However, we can construct a topological Chern-Simons term that evaluates the minimal helicity flux operators at \( {\mathcal{I}}^{+} \).
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).