The Nahm transform of multi-fractional instantons

IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy
Mohamed M. Anber, Erich Poppitz
{"title":"The Nahm transform of multi-fractional instantons","authors":"Mohamed M. Anber,&nbsp;Erich Poppitz","doi":"10.1007/JHEP04(2025)031","DOIUrl":null,"url":null,"abstract":"<p>We embed the multi-fractional instantons of SU(<i>N</i>) gauge theories on <span>\\( {\\mathbbm{T}}^4 \\)</span> with ’t Hooft twisted boundary conditions into U(<i>N</i>) bundles and use the Nahm transform to study the corresponding configurations on the dual <span>\\( {\\hat{\\mathbbm{T}}}^4 \\)</span>. We first show that SU(<i>N</i>) fractional instantons of topological charge <span>\\( Q=\\frac{r}{N},r\\in \\left\\{1,2,\\dots, N-1\\right\\} \\)</span>, are mapped to fractional instantons of SU(<span>\\( \\hat{N} \\)</span>) of charge <span>\\( \\hat{Q}=\\frac{r}{\\hat{N}} \\)</span>, where <span>\\( \\hat{N} \\)</span> = <i>Nq</i><sub>1</sub><i>q</i><sub>3</sub> <i>− rq</i><sub>3</sub> + <i>q</i><sub>1</sub> and <i>q</i><sub>1<i>,</i>3</sub> are integer-quantized U(1) fluxes. We then explicitly construct the Nahm transform of constant field strength fractional instantons of SU(<i>N</i>) and find the SU(<span>\\( \\hat{N} \\)</span>) configurations they map to. Both the <span>\\( {\\mathbbm{T}}^4 \\)</span> instantons and their <span>\\( {\\hat{\\mathbbm{T}}}^4 \\)</span> images are self-dual for appropriately tuned torus periods. The Nahm duality can be extended to tori with detuned periods, with detuning parameter ∆, mapping solutions with ∆ &gt; 0 on <span>\\( {\\mathbbm{T}}^4 \\)</span> to ones with <span>\\( \\hat{\\Delta } \\)</span> &lt; 0 on <span>\\( {\\hat{\\mathbbm{T}}}^4 \\)</span>. We also recall that fractional instantons appear in string theory precisely via the U(<i>N</i>) embedding, suggesting that studying the end point of tachyon condensation for ∆ ≠ 0 is needed — and is perhaps feasible in a small-∆ expansion, as in field theory studies — in order to understand the appearance and role of fractional instantons in <i>D</i>-brane constructions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)031.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We embed the multi-fractional instantons of SU(N) gauge theories on \( {\mathbbm{T}}^4 \) with ’t Hooft twisted boundary conditions into U(N) bundles and use the Nahm transform to study the corresponding configurations on the dual \( {\hat{\mathbbm{T}}}^4 \). We first show that SU(N) fractional instantons of topological charge \( Q=\frac{r}{N},r\in \left\{1,2,\dots, N-1\right\} \), are mapped to fractional instantons of SU(\( \hat{N} \)) of charge \( \hat{Q}=\frac{r}{\hat{N}} \), where \( \hat{N} \) = Nq1q3 − rq3 + q1 and q1,3 are integer-quantized U(1) fluxes. We then explicitly construct the Nahm transform of constant field strength fractional instantons of SU(N) and find the SU(\( \hat{N} \)) configurations they map to. Both the \( {\mathbbm{T}}^4 \) instantons and their \( {\hat{\mathbbm{T}}}^4 \) images are self-dual for appropriately tuned torus periods. The Nahm duality can be extended to tori with detuned periods, with detuning parameter ∆, mapping solutions with ∆ > 0 on \( {\mathbbm{T}}^4 \) to ones with \( \hat{\Delta } \) < 0 on \( {\hat{\mathbbm{T}}}^4 \). We also recall that fractional instantons appear in string theory precisely via the U(N) embedding, suggesting that studying the end point of tachyon condensation for ∆ ≠ 0 is needed — and is perhaps feasible in a small-∆ expansion, as in field theory studies — in order to understand the appearance and role of fractional instantons in D-brane constructions.

多分数阶瞬子的纳姆变换
我们将具有t Hooft扭曲边界条件的\( {\mathbbm{T}}^4 \)上的SU(N)规范理论的多分数阶实例嵌入到U(N)束中,并利用Nahm变换研究了对偶\( {\hat{\mathbbm{T}}}^4 \)上相应的构型。我们首先证明了拓扑电荷\( Q=\frac{r}{N},r\in \left\{1,2,\dots, N-1\right\} \)的SU(N)分数阶瞬子映射到电荷\( \hat{Q}=\frac{r}{\hat{N}} \)的SU(\( \hat{N} \))分数阶瞬子,其中\( \hat{N} \) = Nq1q3−rq3 + q1和q1,3是整数量子化的U(1)通量。然后,我们显式地构造SU(N)的恒定场强分数实例的Nahm变换,并找到它们映射到的SU(\( \hat{N} \))构型。对于适当调整的环面周期,\( {\mathbbm{T}}^4 \)瞬子和它们的\( {\hat{\mathbbm{T}}}^4 \)映像都是自对偶的。Nahm对偶可以推广到具有失谐周期的环面,失谐参数为∆,映射解为∆&gt;从\( {\mathbbm{T}}^4 \)到\( \hat{\Delta } \) &lt;0上\( {\hat{\mathbbm{T}}}^4 \)。我们还回顾了分数瞬子通过U(N)嵌入精确地出现在弦理论中,这表明为了理解分数瞬子在d膜结构中的出现和作用,需要研究∆≠0时速子凝聚的终点——并且在小∆膨胀中可能是可行的,就像在场论研究中一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信