{"title":"Advanced metal-contained composites for fluoride removal from wastewater: mechanism, preparation, properties and applications","authors":"Yiting Cheng, Xiuling Yang, Gaigai Duan, Chunmei Zhang, Weisen Yang, Hongliang Zhao, Wendong Du, Jianxiu Ma, Zhongfu Tang, Shaohua Jiang","doi":"10.1007/s11705-025-2540-7","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of society, fluoride pollution in the water environment caused by human activities and natural development has constituted one of the main causes of threat to human health and safety. Among the various fluoride removal technologies available, adsorption technology has been deeply explored by various scientists and has made great progress in the current emergency situation of fluoride-contaminated water sources, especially the adsorbents containing metal or metal ion materials, which have better results. This review first describes the various mechanisms of fluoride removal by adsorption, the different methods of preparation of the materials (electrospinning, hydrothermal, solvothermal, and so on), and the current applications of the materials in fluoride removal. Then, in terms of application, the influence of different factors on the fluoride removal capacity is presented. Finally, solutions to the current problems are proposed. However, to apply them to industry for large-scale use requires the continued exploration of various researchers to make the theoretical effects into practical ones, thus improving the environment on which we depend.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2540-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of society, fluoride pollution in the water environment caused by human activities and natural development has constituted one of the main causes of threat to human health and safety. Among the various fluoride removal technologies available, adsorption technology has been deeply explored by various scientists and has made great progress in the current emergency situation of fluoride-contaminated water sources, especially the adsorbents containing metal or metal ion materials, which have better results. This review first describes the various mechanisms of fluoride removal by adsorption, the different methods of preparation of the materials (electrospinning, hydrothermal, solvothermal, and so on), and the current applications of the materials in fluoride removal. Then, in terms of application, the influence of different factors on the fluoride removal capacity is presented. Finally, solutions to the current problems are proposed. However, to apply them to industry for large-scale use requires the continued exploration of various researchers to make the theoretical effects into practical ones, thus improving the environment on which we depend.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.