Sulfhydryl Grafted Palygorskite can Efficiently and Stably Immobilize Cd in Calcareous Soil and Inhibit Cd Accumulation in Wheat in the Second Year

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yale Wang, Kaihui Hou, Junxiao Jiang, Yingming Xu, Yali Wang, Chunhong Xu, Qing Zhao, Yongqiang Yang, Liping Li, Gaoling Shi
{"title":"Sulfhydryl Grafted Palygorskite can Efficiently and Stably Immobilize Cd in Calcareous Soil and Inhibit Cd Accumulation in Wheat in the Second Year","authors":"Yale Wang,&nbsp;Kaihui Hou,&nbsp;Junxiao Jiang,&nbsp;Yingming Xu,&nbsp;Yali Wang,&nbsp;Chunhong Xu,&nbsp;Qing Zhao,&nbsp;Yongqiang Yang,&nbsp;Liping Li,&nbsp;Gaoling Shi","doi":"10.1007/s11270-025-07907-1","DOIUrl":null,"url":null,"abstract":"<div><p>Cadmium (Cd) contamination of wheat fields is a major environmental problem. Sulfhydryl-grafted palygorskite (SGP) has been used as an efficient amendment to immobilize Cd in calcareous wheat fields. However, information on the long-term effects of SGP on soil Cd immobilization and accumulation in wheat remains limited. In this study, wheat pot and freeze–thaw (F/T) cycle experiments were conducted to explore the remediation stability of SGP during winter wheat growing. The wheat pot experiments showed that applying 0.1–0.2%SGP significantly decreased Cd in wheat grains by 21.57–57.85% in the second year. The application of 0.2%SGP decreased diethylenetriaminepentaacetic acid (DTPA) extractable Cd by 33.84–39.70%, increased DTPA extractable Mn by 11.22–15.86%, and promoted the conversion of exchangeable Cd into carbonate-bound and Fe/Mn oxide-bound Cd fractions in the soil in the second year. The composition and function of soil bacteria differed under the SGP treatment for two consecutive years. F/T cycle experiments showed that F/T cycles did not affect soil pH but converted exchangeable Cd and carbonate-bound Cd to the residual Cd fraction (6%) and increased the mass fraction of &gt; 2 mm soil aggregates. Under 0.2%SGP application, F/T cycles further decreased the available soil Cd concentration and increased the immobilization efficiency of SGP on Cd by 9.37–11.82% in various aggregates. Although SGP can reduce Cd accumulation in wheat for two consecutive years, the remediation efficiency decreased compared to that in the first year, which is unrelated to seasonal F/T cycles; the specific reasons for this reduction must be further explored. Overall, SGP displayed long-term immobilization effects on Cd in wheat fields and showed higher efficiency under F/T cycle conditions, with the potential for long-term remediation of Cd-contaminated calcareous soils in cold regions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07907-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) contamination of wheat fields is a major environmental problem. Sulfhydryl-grafted palygorskite (SGP) has been used as an efficient amendment to immobilize Cd in calcareous wheat fields. However, information on the long-term effects of SGP on soil Cd immobilization and accumulation in wheat remains limited. In this study, wheat pot and freeze–thaw (F/T) cycle experiments were conducted to explore the remediation stability of SGP during winter wheat growing. The wheat pot experiments showed that applying 0.1–0.2%SGP significantly decreased Cd in wheat grains by 21.57–57.85% in the second year. The application of 0.2%SGP decreased diethylenetriaminepentaacetic acid (DTPA) extractable Cd by 33.84–39.70%, increased DTPA extractable Mn by 11.22–15.86%, and promoted the conversion of exchangeable Cd into carbonate-bound and Fe/Mn oxide-bound Cd fractions in the soil in the second year. The composition and function of soil bacteria differed under the SGP treatment for two consecutive years. F/T cycle experiments showed that F/T cycles did not affect soil pH but converted exchangeable Cd and carbonate-bound Cd to the residual Cd fraction (6%) and increased the mass fraction of > 2 mm soil aggregates. Under 0.2%SGP application, F/T cycles further decreased the available soil Cd concentration and increased the immobilization efficiency of SGP on Cd by 9.37–11.82% in various aggregates. Although SGP can reduce Cd accumulation in wheat for two consecutive years, the remediation efficiency decreased compared to that in the first year, which is unrelated to seasonal F/T cycles; the specific reasons for this reduction must be further explored. Overall, SGP displayed long-term immobilization effects on Cd in wheat fields and showed higher efficiency under F/T cycle conditions, with the potential for long-term remediation of Cd-contaminated calcareous soils in cold regions.

巯基接枝钙钛矿能高效稳定地固定石灰性土壤中的镉,并抑制第二年小麦中镉的积累
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信