Dmitry Chicherin, Johannes Henn, Jaroslav Trnka, Shun-Qing Zhang
{"title":"Positivity properties of five-point two-loop Wilson loops with Lagrangian insertion","authors":"Dmitry Chicherin, Johannes Henn, Jaroslav Trnka, Shun-Qing Zhang","doi":"10.1007/JHEP04(2025)022","DOIUrl":null,"url":null,"abstract":"<p>In this paper we discuss the geometric integrand expansion of the five-point Wilson loop with one Lagrangian insertion in maximally supersymmetric Yang-Mills theory. We construct the integrand corresponding to an all-loop class of ladder-type geometries. We then investigate the known two-loop observable from this geometric viewpoint. To do so, we evaluate analytically the new two-loop integrals corresponding to the negative geometry contribution, using the canonical differential equations method. Inspecting the analytic result, we present numerical evidence that in this decomposition, each piece has uniform sign properties, when evaluated in the Amplituhedron region. Finally, we present an alternative bootstrap approach for the ladder-type geometries. We find that certain minimal bootstrap assumptions can be satisfied at two loops, but lead to a contradiction at three loops. This suggests to us that novel alphabet letters are required at this loop order. Indeed studying planar three-loop Feynman integrals, we do identify novel pentagon alphabet letters.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP04(2025)022.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP04(2025)022","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we discuss the geometric integrand expansion of the five-point Wilson loop with one Lagrangian insertion in maximally supersymmetric Yang-Mills theory. We construct the integrand corresponding to an all-loop class of ladder-type geometries. We then investigate the known two-loop observable from this geometric viewpoint. To do so, we evaluate analytically the new two-loop integrals corresponding to the negative geometry contribution, using the canonical differential equations method. Inspecting the analytic result, we present numerical evidence that in this decomposition, each piece has uniform sign properties, when evaluated in the Amplituhedron region. Finally, we present an alternative bootstrap approach for the ladder-type geometries. We find that certain minimal bootstrap assumptions can be satisfied at two loops, but lead to a contradiction at three loops. This suggests to us that novel alphabet letters are required at this loop order. Indeed studying planar three-loop Feynman integrals, we do identify novel pentagon alphabet letters.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).